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Correlations in a system of N classical, coupled oscillators are studied, with a view toward obtaining 
a more complete understanding of Griffiths.type inequalities. The potential energy is assumed to be 
U = r~::i~JJ;;xixi - 'LHkJ<Xk, with -00 ::;; Xi::;; 00 andJii = Jii . The N x Nmatrix with elements {Jii } 
is assumed positive definite. Sufficiency conditions for the correlation functions to satisfy Griffiths.type 
inequalities are found to be: (i) KiJ ~ 0 for all i, j, where K = J-l and (ii) ~i KIiHi ~ 0 for all I. The 
class of systems obeying (i) and (ii) contains those for which Jii ::;; 0, i F j, and Hk ~ 0 for all k; these 
are direct analogs of Ising ferromagnets. It is proved that a necessary and sufficient condition for 
Griffiths.type inequalities to hold for arbitrary {Hk ~ O} is simply (i) above. The sufficiency conditions (i) 
and (ii) are broader than those available to date for IsiIig models (only the sufficiency condition of ferro. 
magnetic coupling is known). The necessary and sufficient condition (i) has no known Ising counterpart 
at present. 

I. INTRODUCTION 

The mathematical description of Ising ferromagnets 
has been enhanced in recent years by the considera
tion of inequalities for spin correlation functions. 
Such inequalities were proved first by Griffithsl for 
spin-i systems with pairwise forces. They have been 
generalized to include the spin-i case2•3 and the 
arbitrary spin case4•S with many-body forces. They 
have been useful tools in the rigorous proofs of various 
statistical mechanical and thermodynamic properties 
for Ising ferromagnets,6-11 and have been investigated 
to some extent for quantum and classical Heisenberg 
models,12-IS and other models.s 

In the present paper, Griffiths.type inequalities 
are studied for classical, coupied-oscillator systems. 
Such inequalities are found to hold under well defined 
circumstances. The model is tractable enough so that: 
(i) rather broad sufficiency conditions for their 
validity can be established, and (ii) a necessary and 
sufficient condition for their existence can be obtained. 
This provides the only nontrivial example (known to 
the author) for which such extensive conditions re
garding the existence of Griffiths-type inequalities are 
known. For Ising models, ferromagnetic coupling is 
known to be a sufficient condition for Griffiths' in
equalities, but broader sufficiency conditions are 
lacking and necessary conditions have yet to be 
ascertained. 

In view of the still incomplete understandingl6 of the 
nature and scope of such inequalities, the establish
ment of sharp criteria for their existence, even for 
oversimplified models such as the present one, may 
shed light on the general picture. It is felt that this 
hope justifies publication of the present findings. 
The mathematical techniques employed here differ 
substantially from those employed in previous correla
tion inequality studies. Some novel aspects of matrix 

analysis and the theory of cumulant expansions are 
central to the discussion. Perhaps such techniques 
will find further utility in the consideration of other, 
related problems. 

In Sec. II, the coupled-oscillator model is introduced 
and its canonical partition function is derived. In Sec. 
III, the correlation functions are introduced and their 
connection with the cumulants of the canonical 
probability distribution is discussed. The Griffiths
type correlation inequalities are investigated in Sec. 
IV; the major results are stated succinctly in Theorems 
1-3. In Sec. V, certain monotonicity properties, which 
are consequences of the correlation inequalities, are 
elucidated for the thermodynamic potentials. Section 
VI contains a summary and interpretation of the 
results. This section closes with a brief discussion of 
the corresponding quantum mechanical problem, 
which leads to some interesting and apparently 
unsolved matrix-theoretic problems. 

II. THE MODEL 

The basic model under consideration is a collection 
of N particles in one dimension,17 coupled together 
such that each one executes oscillations about its own 
equilibrium position. The coordinates (Xl' ... , XN) 
are measured relative to the N equilibrium positions. 
The potential energy is assumed to have the form 

N N 

U(x) = i Z 'IJiiXiXj ~ 0, (1) 
i=l j=1 

where - 00 < Xi < 00 for i = 1, ... , N. x represents 
the N-dimensional vector with Cartesian components 
(Xl' •.. ,XN), and equality in (1) occurs only for 
x = (0, ... , 0) == O. The real coefficients {Jij } are 
assumed to satisfy the symmetry condition 

Jij = J ji for all pairs (i,j). (2) 
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The right hand side of (1) may be thought of as a 
truncated Taylor series expansion about x = 0, using 
the convention U(O) = O. Equation (2) then results 
from equality of the mixed second derivatives of the 
full potential energy (assuming the latter is continuous 
and has continuous first and second derivatives). 
Properties (1) and (2) imply that the matrix J of the 
coupling coefficients {Jij} is a real-symmetric, positive
definite matrix. IS 

Although a formal resemblance between (1) and the 
Ising model Hamiltonian for pairwise forces is evident, 
it is helpful to delineate explicitly some of the similari
ties and differences for the two models: (i) Both are 
bilinear forms in their variables. (ii) Here, each Xi 

varies continuously from - 00 to + 00, while for the 
Ising model, each Xi either takes on a discrete set of 
values (quantum case) or a continuum of values in 
some bounded domain (classical case). (iii) For the 
Ising model, the Hamiltonian is preceded by a minus 
sign, while (1) contains no such prefactor. [If a minus 
sign were included in (1), the inequality U ~ 0 would 
then make J a negative-definite matrix.] Thus, the 
case for which Jii ~ 0, i ¢ j, here corresponds 
directly to the ferromagnetic Ising model. This point 
is clarified further in Sec. IV. (iv) Since J is positive 
definite here, Jii > 0 for i = 1, ... ,N. For the 
Ising model, Jii is usually chosen to be zero for all i. 
However, at least for the spin-! case, if all the Jii are 
chosen to be nonzero for the Ising model,the Griffiths 
inequalities are unaffected. (v) The pOSitive-definite 
character of J here does not imply that all off-diagonal 
elements of J have the same algebraic sign. In the 
usual treatment of Ising ferromagnets, on the other 
hand, one chooses Jii ~ 0 for i:;l: j and does not 
specify that the corresponding matrix is positive
(or negative-) definite.19 

The coupled-oscillator system can be modified so as 
to simulate external magnetic field interactions by 
using the total potential energy 

N 

U H(X) = U(x) - 2, Hkxk , (3) 
k=1 

where Hk is the "magnetic field" acting on particle k. 
The condition Hk = Hz for all k:;l: I (uniform 
magnetic field) can be used in the final results, if so 
desired, but it is convenient in their derivation to work 
with the set {Hk }. 

The canonical partition function Z for the system 
described by (1)-(3) is 

Z(H) = (ANN!)-IL:" ·L:dXN exp [-,BUH(x») 

= (ANNl)-lZcCH). (4) 

The last line defines the configurational partition 
function, Zc(H). A is the thermal wavelength, A = 
(21rm/fJh2)t, which depends nontrivially on the inverse 
temperature fJ and the mass m of the oscillators; h is 
Planck's constant. 

For H = (HI, ... , HN) = 0, Zc(O) can be evalu
ated explicitly by transforming to a basis in which J 
is diagonal. The result,20 which is well known, is 

Notice that det J > 0 since J is positive-definite. 
For H ¢ 0, a similar procedure is possible. Let R 
denote the real-orthogonal matrix which diagonalizes 
J, i.e., 

RJR-l = D, (6) 

where D is a diagonal matrix whose elements Dii = 
A; > 0 are the eigenvalues of J.21 Define y = Rx, 
so that, using an obvious inner product notation, 

UH(x) = Hy, Dy) - (y, RH) == UH(y). (7) 

Since R is real-orthogonal, the Jacobian of the x -+ y 
transformation is unity, and 

Rewriting (7) as 

and defining new variables Zi = Yi - (RH)iAi2, it 
is clear that 

ZcCH) = ZcCO) exp [lP i~ (RH)~Ai2J 
= Zc(O) exp [!Pi~lJ~1KikHjHkl (10) 

where 
K == J-I (11) 

is the inverse of J, i.e., the matrix with eigenvalues 
{Ai2

}. 

Notice that the existence of K is insured by the 
positive definiteness of J. Also, K is positive definite, 
since its eigenvalues are all positive, and it is symmetric 
because J is. That is, the transpose of JK = KJ = I 
is KTJ = JKT = I; thus KT = K. 
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ITI. CORRELATION FUNCTIONS AND 
CUMULANTS 

The correlation function (x z) is defined by 

(x z) = [Zc(HW
1L:·· ·L:dXN(Xz)exp [-pUHex)] 

= p-l ~ [In ZC<H)] 
iJHI 

IV 

= '2, KZiHj 
j~1 

(12) 

The symmetry of K was employed in conjunction with 
Eq. (10) in obtaining the third line in (12). 

The binary correlation function (xzxm ) can be 
written 

(xrx m) = [ZcCH)t
1 t:· .. L:dxN(xzxm) 

x exp [-pU H(X)] 

= -(1 + I5 zm)fJ-1(-O-ln ZcCH)). (13) 
O]lm 

The factor (1 + <5 zm), where <5 zm is the Kronecker 
delta, arises because of the symmetry of J. Using (5) 
and (10), the right-hand side of (l3) can be evaluated 
explicitly. This process, though instructive, is some
what tedious and is carried out in the appendix. An 
equivalent and more direct approach to obtain 
(xr.xm) is to recognize that, due to the structure of 
UH(x), 

iJ(x l ) 
- = P[(x1xm) - (xl)(xm)]. (14) 
oHm 

Using (12), it is seen that 

iJ(xl) --K iJH - 1m' 
m 

whereupon (14) reduces to 

(15) 

(xzXm ) = {J-IKlm + (KHMKH)m' (16) 

Of course, the analysis beginning with (13) (see 
Appendix) also leads to (16). 

In analogy with (14), higher order correlation 
functions can be obtained generally by differentiating 
lower order functions. The differentiations can be 
carried out with respect to components of H or 
elements of J. For example, 

iJ(x1xm ) 
-- = (J«XZxmxn) - (x1xm)(xn»). (17) 

iJHn 

read 

(xzxmxn) = (x1xm)(xn) + (xzxn)(xm) 

+ (xmxn)(x l) - 2(xz)(xm )(xn)· (18) 

An equivalent procedure for obtaining (xzxmxn) is 
to write 

a~J ~ - = -P[(x1xmxn) - (xZxm)(xn)](l + <5 zm) . (19) 
O]lm 

Using (12) and (A6), one again is led to (18). 
The above discussion can be generalized and ex

tended in scope in the following way. Let P denote 
the set of all particle indices (1, 2, ... , N) and let A 
denote a subset of P; i.e., A c P. Further, define 
XA by 

(20) 

The various correlation functions (XA ) can be 
generated conveniently in terms of the cumulants22 

of the canonical probability distribution. The cumu
lants may be defined as follows. For a set of N real 
numbers {$k}' 1 ~ k ~ N, consider the "moment 
generating function" 

(21) 

In the last line, each Vi runs from zero to infinity, but 
the primed summation excludes the term for which 
Vi = 0 for every i, 1 ::;; i ::;; N. For a given set of 
integers (VI"" ,VN) (not all zero), (21) defines the 
cumulants (XIl ••• x,,#)c' If Vi = 1 for i E A and 
Vi = 0 for if A, then the latter cumulant is written 
simply as (XA)c' Clearly, since 

(XA ) = [}J iJ~J<exp L~~kXkJ)Lo' (22) 

(XA ) can be related to the cumulants, using (21). In 
fact, it turns out22 that each correlation function 
(XA ) is expressible in terms of the corresponding 
cumu1ant (XA)c and products of lower order cumu
lants; similarly (XA)c can be expressed in terms of 
(X A) and products oflower order correlation functions. 
For example, 

Using (16), the left hand side of (17) can be evaluated and 
explicitly, in which case (17) can be rearranged to 

(23) 

(24) 
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It can be shown23 that, in general, 

(XA ) = I" II (XB)e, (25) 
i 

where the doubly-primed summation is over all parti
tions of A into distinct sets Hi' whose union U Hi 
is A itself. For each term in the series, i runs over the 
number of elements in the corresponding partition. 

Equation (25) is instrumental in proving the theo
rems in the next section. A further property which is 
needed is : For the coupled-oscillator model, 

IN \ N 
\
II x;// = 0 for ~ Vi ~ 3. 
.~l c .~1 

(26) 

This property is well known (being most commonly 
stated for Hk = 0, 1 ~ k ~ N) to statisticians 
familiar with the multivariate normal distribution.24 

It can be proved as follows. With the aid of (10), the 
moment generating function of (21) can be evaluated 
explicitly. The result is 

(27) 
It follows from (21) that 

Equating coefficients of (II;~?) on each side of (28), 
it is immediately clear that (26) is true. 

IV. CORRELATION INEQUALITIES 

Having developed the basic mathematical formalism 
in the last section, it is now possible to obtain the 
desired Griffiths-type correlation inequalities, which 
are: 

GT!: (XA ) ~ 0 for all A c P. 

GTIIa: a(XA)/aHn ~ 0 for all A c P and 

l~n~N. 

GTIIb: a(XA)/aJmn ~ 0 for all A c P and 

1 ~ n, m ~ N. 

GTIIa and GTIIb are referred to collectively simply 
as GTII. The major results which follow are stated in 
theorem form, for precision. 

Theorem 1: For a classical system of coupled 
oscillators defined by (1)-(3), sufficient conditions for 
GTI and GTII are that the inverse matrix K = J-l 
and the external field H be such that: (i) Kim ~ 0 for 
I ~ I ~ N, I ~ m ~ Nand (ii) I~l KljH; ~ 0 
for 1 ~ I ~ M. 

Proof From (26) it follows that the only nonzero 
cumulants are (Xl)c and (xlxm)c for 1 ~ m, I ~ N. 
Furthermore, since (xl)c = (Xl)' it follows from (12) 
that 

N 

(xl)e = IKljH j • 
;~1 

From (12), (16), and (24) one obtains 

(29) 

(30) 

Clearly, if (29) and (30) are nonnegative for 1 ~ I, 
m ~ N, then, due to (25), all moments (XA ) are 
guaranteed to be nonnegative. This proves the 
statement of Theorem 1 regarding GTI. 

From (29), (30), and (A6) one has 

O(X)IC 
--=Kln , 
aHn 

o(x1xm)c = 0 

oH ' n 

(31) 

(32) 

+ KlnKmnbnr]. (34) 

Due to (25), derivatives of (X A) consist of derivatives of 
sums of products of 1- and 2-particle cumulants. But 
(31)-(34) together with the nonnegativity of (29) and 
(30) [conditions (i) and (ii)] insure that each resulting 
term is nonnegative for Hn-derivatives and nonpositive 
for J mn-derivatives. This proves the statement re
garding OTII. 

Remarks: The condition Kim ~ 0 for all pairs 
(I, m) does not imply the same property for J, nor 
does it imply that the off-diagonal elements of J are 
all negative. For example, for N = 3, consider 

( 

9 -36 30) (1 i i) 
J = - 36 192 -180 , K = tit . 

30 -180 180 i ! t 
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Here, det J = 2160 and all subdeterminants J(k) = 
det (Ji')' 1 ::;; i,j::;; k are positive; thus, J is positive 
definite.25 The diagonal elements of J are all positive, 
as they must be, while J12 = J21 < 0, J23 = J32 < 0, 
but J13 = J31 > O. It is concluded that the condition 
Ki] ~ 0 for all pairs (i,j) does not demand that the 
off-diagonal elements of J all have the same algebraic 
sign. Furthermore, by reversing the choices of J and 
K above, one sees that if J has all nonnegative ele
ments, K need not have all nonnegative elements, 
and therefore Theorems 1 and 2 do not apply in 
general when Ji] ~ 0 for all pairs (i,j). 

On the other hand, suppose Ji} ::;; 0 for all pairs 
i =;6 j, and that Jii > 0 for all i. (Recall that Jij ::;; 0, 
i =;6 j, corresponds to ferromagnetic coupling in the 
Ising model.) Then one may appeal to the following 
lemma. 

Lemma 1 (Stieltjes-Ostrowski): If J is an N x.N 
positive-definite matrix with the property Jij ::;; 0 for 
i =;6 j, then K = J-l has the property Kzm ~ 0 for 
1 ::;; I ::;; N, 1 ::;; m ::;; N. 

Remarks: This lemma was proved first by Stieltjes26 

for positive-definite, real matrices, and only for strict 
inequalities (Jij < 0, i =;6 j, K zm > 0). The general
ization to Ji} ::;; 0 for i =;6 j is due to Ostrowski. 27 

Ostrowski's proof is less restrictive in that it holds for 
a class of real matrices ("M-matrices") which contains 
the class of positive definite matrices. [A real matrix 
is an M-matrix if: (i) its diagonal elements are positive, 
(ii) its off-diagonal elements are nonpositive, (iii) its 
determinant and all its principal subdeterminants are 
positive. 28] 

Theorem 2: For the system of Theorem 1 a sufficient 
set of conditions for GTI and GTII is 

(i) Ji} ::;; 0, i =;6 j 
and 

(ii) I{':1 KjlHz ~ 0 for 1 ::;; j ::;; N. 

Proof' By Lemma 1, (i) implies that K zm ~ 0 for 
all pairs (I, m). Thus, (i) and (ii) reduce to the suffi
ciency conditions of Theorem 1. 

Remarks: A special case of (ii) is Hz ~ 0 for I :::;;; 
I::;; N. This contains the uniform field case: Hz = 
H ~ 0,1:::;;; I::;; N. 

Theorem 3: For the system of Theorem 1, a neces
sary and sufficient condition for GTI and GTII to 
hold for all Hk ~ 0, 1::;; k ::;; N, is Kzm ~ 0 for 
1 :::;;; I :::;;; N, I :::;;; m :::;;; N. 

Proof: The sufficiency part is clear from Theorem 1. 
The necessity can be seen as follows. If (x z) = 
I KZjHj ~ 0 for all H, ~ 0 and for alII, then KZi ~ 0 
for all pairs (I,j). This is necessary since, for example, 
if K Zj < 0 for j = p, then one could choose Hi = 0 
for j =;6 p and H'IJ > 0, whereupon the contradiction 
(x z) < 0 would occur. Thus KZi ~ 0 for all pairs 
(I,j) is necessary for (x z) ~ 0 for alII. Furthermore, 
the nonnegativity of K is necessary for 

(xzxm ) = {J-IKzm + (I KliHiKI KmiHj) ~ O. 

To see this, choose Hi = 0 for all j, whereupon 
(XZxm ) = {J-IKzm ' This completes the proof; 

Remarks: Theorem 3 holds, in particular, for the 
uniform field case Hk = H for 1 ::;; k ::;; N, and all 
H ~ O. A further special case of interest is that for 
which H= O. 

The following theorem is included here because it 
provides a necessary and sufficient condition on the 
matrix J such that K = J-l has all positive elements. 
The theorem is relatively complicated to state and its 
proof is nontrivial. The interested reader is directed 
to the paper by Fiedler and Ptak29 for the details. In 
Sec. VI the physical implications of this necessary and 
sufficient condition are examined. 

Theorem 4 (Fiedler-Ptak): Let So denote the class 
of real matrices B with the property that there exists a 
vector XO =;6 0 with components x~ ~ 0, 1 ::;; i ::;; N, 
for which the components (BxO)z ~ 0, 1::;; I ::;; N. 
Let .At, denote the class of all real matrices J such that: 
(i) J E So and (ii) no submatrix obtained from J by 
omitting at least one column thereof belongs to So. 
Then, J-l has all positive elements if and only if 
det (J) =;6 0 and J E .At,. 

V. THERMODYNAMIC RAMIFICATIONS 

In this section several monotonicity properties of 
the thermodynamic potentials are proved for coupled
oscillator systems for which Jii ::;; 0 and Hi ~ 0 for 
1 ::;; i, j ::;; N. These properties are implied by Lemma 
1 and Theorem 2 of Sec. IV, and are summarized in 
Theorems 5 and 6 below. A similar investigation 
without the above restrictions on J and H is possible 
(but it is less transparent) and is left as an exercise for 
the interested reader. 

Theorem 5: For the system of Theorem 1, with 
Jii ::;; 0, i =;6 j and Hk ~ 0, 1 ::;; k ::;; N, the average 
total energy and Helmholtz free energy are monotone 
decreasing functions of each Hk , 1::;; k ::;; N. The 
entropy is independent of the set {Hk }. 
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Proof: From (1), (3), (12), and (16) one obtains 

N N N 

(VH) = l~ ~Jk/(XkX!) - ~Hk(Xk) 
k=1!=l k=l 

N N 

= N/2{J - 1 ~ ~ KkIHkH1 • (35) 
k=1!=l 

Therefore, using (12), (35), and Theorem 2, 

o(UH ) 
~ = -(xn) ~ 0 for 1 ~ n ~ N. (36) 

n 

The average total energy, (E) is simply (U H) plus the 
average kinetic energy, which is easily seen to be 
N/2{J. Therefore, 

o(U H) o(E) 
-- = - < 0 for 1 < n < N. (37) 
oHn oHn - - -

The Helmholtz free energy F = - (J-l In Z satisfies 

of 
;- = -(xn ) ~ 0 for 1 ~ n ~ N. (38) 
uHn 

The entropy is S = k{J( (E) - F) and, using (36)-(38), 
it becomes clear that 

oS 
oH = 0 for 1 ~ n ~ N. (39) 

n 

The results (37)-(39) establish the desired theorem. 

Remarks: The monotonicity properties for the 
energy and Helmholtz free energy are shared by a 
general class of ferromagnetic Ising models.8 For the 
latter, the entropy is also a monotone decreasing 
function of the external field components. Here, this 
is also the case technically. (S is both monotone 
decreasing and increasing!) However, the present 
entropy behavior is clearly far removed from that of 
the Ising model. The entropy constancy is discussed 
further in Sec. VI. Notice that, for H = 0, one obtains 
(E) = N/{J, which is consistent with the well-known 
equipartition theorem. 

Theorem 6: For the system of Theorem 1, with 
Jii ::;; 0, i =;1= j, and Hk ~ 0, 1 ~ k ::;; N, the average 
total energy and Helmholtz free energy are monotone 
increasing functions, and the entropy is a monotone 
decreasing function of the coupling coefficients {Jii}. 

Proof" From (35), using (A6), one obtains 

o(U H) _ .1 
:1 - 2(2 - bmn)(xn)(xm) 2:: O. (40) 
uJmn 

The inequality follows from Theorem 2. It follows 

that 

o(U H) o(E) 
-- = - > 0 for 1 ~ m, n ~ N. (41) oJmn oJmn -

Furthermore, it is a straightforward exercise to show 
that 

of 
-:1- = t(2 - bmn)(xmxn) ~ 0 for 1 ~ m, n ~ N. 
uJmn 

(42) 

Again, the inequality follows from Theorem 2. Finally, 
using (40)-(42), one sees that 

oS 
~ = -tk(2 - bmn)Kmn ~ 0 for 1 ~ m, n ~ N. 

mn 
(43) 

The results (41)-(43) establish Theorem 6. 

Remarks: For ferromagnetic Ising models, the 
energy, Helmholtz free energy, and entropy are all 
monotone decreasing functions of the (positive) 
coupling coefficients.s The first two properties are 
actually shared in essence by the present model, the 
opposite sense of the inequalities being due solely to 
the absence of a minus one prefactor in U(x), Eq. (1). 
The entropy property here is identical in form with 
that for Ising ferromagnets. 

VI. DISCUSSION 

A. Major Results 

The present analysis yields new results regarding 
the nature and scope of Griffiths-type inequalities. 
The content of Theorem 2 provides a direct analog of 
Griffiths' first (GTI) and second (GTII) inequalities 
for Ising ferromagnets. Theorem 1 provides broad 
sufficiency conditions for Griffiths-type inequalities 
and Theorem 3 provides a necessary and sufficient 
condition for these inequalities. The sense of the 
inequality GTIIb is opposite to that for Ising models, 
but this is due simply to the absence of a prefactor 
minus one in the zero field potential energy, Eq. 
(1). Of course, the coupled oscillator model is more 
simple and less interesting than the Ising model. 30 

On the other hand, it is apparently the only nontrivial 
model for which such detailed information regarding 
correlation inequalities is known. In view of the strong 
resemblance of its potential energy structure and 
resulting correlation inequalities with their Ising model 
counterparts, it seems reasonable to use it in an 
attempt to deepen the understanding of correlation 
inequalities. Presumably, corresponding sufficiency 
conditions for the Ising model, which are broader 
than simply the criterion of ferromagnetic coupling, 
and also necessary and sufficient conditions, will be 



                                                                                                                                    

CORRELATION INEQUALITIES 575 

found ultimately. Perhaps the present results will aid 
or at least provide further stimulus for such efforts. 

B. Physical Interpretation 

For a I-dimensional coupled oscillator system, the 
condition J mn ~ 0 for m :;i: n is physically reasonable 
since the force on particle m due to its pair interaction 
with particle n is F m.n = -J mnxn' This is expected to 
be positive (negative) when Xn > 0 (xn < 0), which 
implies J mn < O. Thus, if one particle is shifted to the 
right all other particles with which it interacts tend 
to shift to the right as well. This statement makes the 
inequality (XA ) ~ 0, which means in essence that the 
oscillator positions are correlated positively, intuitively 
reasonable. The effect of a positive field Hk is to 
shift each average value (Xl) to the right, which tends 
to enhance the positive correlations between positions. 
These statements give physical meaning to GTI and 
GTIIa. 

Since an algebraic increase of an off-diagonal 
element, J mn < 0, decreases the magnitude of the 
force F m.n = -J mnXn for a given value of X n , it is 
expected that (xmxn) decreases correspondingly. 
Similarly, one expects the general correlation functions 
(X A) to decrease under a decrease of some J mn' This 
explains GTIIb in physical terms. 

C. Entropy and Order 

The thermodynamic monotonicity properties can 
also be argued on physical grounds. Consider here the 
entropy property. Since an increase in lmn for 
m :;i: n (Jmn < 0) decreases the magnitude IJmnl, this 
corresponds to weaker coupling between particles m 
and n. This, in turn, tends to increase the localization 
of the particles in the neighborhoods of their respec
tive equilibrium sites; this increased localization may 
be thought of as increased order. Similarly, the 
increase of a (positive) diagonal coefficient Jii in
creases the localization of particle i relative to its 
equilibrium position. Again, the order increases. 
These statements are consistent with Theorem 5 
using the idea that an increase in order is reflected b; 
a decrease in entropy.31.32 An increase in a component 
Hk ~ 0 shifts each particle's average position to the 
right (not necessarily all by the same amount) and has 
no net effect on the systems order; thus S is unchanged 
under such a variation (Theorem 5). 

D. Fiedler-Pt8k Theorem 

It seems likely that, on the basis of Lemma 1, the 
condition Kij ~ 0 for all pairs (i,j) is implied for a 
large class of matrices J, which have "predominantly 

nonpositive, off-diagonal elements." For example, 
the 3 x 3 matrix illustrated in Sec. IV has this 
property by virtually any reasonable definition thereof. 

( One such criterion is, say, ~ ~ Jij < 0; for the 
,<) 

3 x 3 example this sum equals -186.) Some such 

condition would presumably be sufficient for the non
negativity of K. On the other hand, Theorem 4 gives 
necessary and sufficient conditions on J for the positiv
ity of K (i.e., Kij > 0, 1 ~ i, j ~ N). It is natural to 
ask what physical information, if any, can be extracted 
from the highly abstract statement of this theorem. 
!t is shown below that the above intuitive reasoning 
IS correct and that Theorem 4 has a pleasing inter
pretation. 

Using the notation of Theorem 4, note first that 
every positive-definite matrix J is contained in the set 
So. This point is proved in the paper by Fiedler and 
Ptlik. 29 This means that for the coupled oscillator 
problem there exists a nonzero xO, with nonnegative 
components, such that 2i JiiX~ ~ 0 for I ~ i ~ N. 
Notice, however, that for the zero external field case, 
the net force on particle i is 

au N 
Fi = - -a = - 2J;iX j' (44) 

Xi i=1 

Therefore, the statement J E So means that there 
exists a nonequilibrium configuration XO for which no 
oscillator lies to the left of its equilibrium site, and for 
which the net force on each particle is either zero or 
is directed toward the left, i.e., 

F~ S 0 for 1 ~ i S N. (45) 

It is instructive to examine condition (45) for the 
special case for which Jii ~ 0, i :F j. Then, 

F~ = -IJiiX~1 + L IJiiX~I, (46) 
i*i 

~nd (45) means: For some nonequilibrium configura
tIOn of the above type, the force on each particle due 
to the binding to its equilibrium site is not exceeded 
by the net force due to the remaining N - 1 oscillators. 
The former is directed to the left and the latter to the 
right. 

Now, returning to the statement of Theorem 4, let 
:R denote a proper subset of the index set P, and sup
pose column r is removed from J for each r E:R. The 
condition J 1= So means that for each set :R c P 

F~(:ft,) == - .L JijX~ > 0 
Nf{ 

(47) 

for at least one value of i, for every nonequilibrium set 
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{X~ ~ O}. This may be interpreted as a condition for 
"predominantly nonpositive off-diagonal elements," 
confirming the above intuitive expectations regarding 
such a condition. 

For the special case, iii ~ 0, i =;f: j, one has 

and 

F~(:;t) = -liiiX~1 + L liiiX~I, for i ¢ 5t, (48) 
if:R 

for i E 5t. (49) 

If (46) is nonpositive for all i ¢ 5t, for some non
equilibrium configuration {x~ ~ O}, so is (48), since 
nonnegative terms have been deleted from (46). 
However, (49) is intrinsically nonnegative for all 
i E 5t, and for any nontrivial choice of the set {x~ ~ O}. 

For this case, it is clear that for every 5t c P, J,'I{ 

(i.e., J, with columns r, r E 5t, removed) does not lie 
in 80 • By definition then, J E.At, and Theorem 4 
applies. Physically, (49) means: The force on the ith 
oscillator, excluding the coupling to its equilibrium 
site, and excluding any number of other couplings, is 
nonnegative for {x~ ~ O} and XO =;f: o. 

Conditions similar to (45) and (47) may also be 
necessary and sufficient for Griffiths' Ising model 
inequalities, but this is left as an open question here. 

E. A Converse Problem 

A question which is related to the converse of 
Theorem 4 has been posed by Kelly and Sherman2 in 
the context of the Ising model. In the present context, 
their question reads: What conditions on the correla
tion functions (X.A) imply that iii ~ 0 for i =;f: j? 
According to (25), (26), (29), and (30), all correlation 
functions are expressible in terms of the elements of 
K and H. Therefore, the Kelly-Sherman question for 
the present model is related to the following. 

Question: What conditions on a real-symmetric, 
positive-definite matrix K imply that its inverse J 
satisfies iii ~ 0 for i =;f: j? 

F. Quantum Mechanical Extension 

It is natural to ask whether or not the present 
results apply to quantum mechanical systems with 
potential energy given by (1)-(3). Although the answer 
to this question is unknown at present, the problem 
leads to some interesting mathematical questions 
which are sketched briefly below. Note first that, since 
each particle's position and momentum no longer 
commute, the quantum coupled oscillator model is 

not expected to be a suitable analog for the Ising 
model. 

As in the classical case, the magnetic field contribu
tions occur as a multiplicative factor in the canonical 
partition function. Denoting the partition function 
by Zqm (qm stands for quantum-mechanical), 

Zqm(H) = Zqm(O)exp [!pil~lKjkHjHkl (50) 

The zero external field case, involving Zqm(O), has 
been discussed in part by Ford, Kac, and Mazur34 in a 
paper dealing primarily with time-dependent phenom
ena for coupled oscillators. They found that for 
particles of unit mass 

(51) 

where L is a real-symmetric, positive-definite matrix 
which commutes with J and K, and which has 
eigenvalues 

where 
b = nP12. 

(52) 

(53) 

They showed also that the binary momentum
momentum and momentum-position correlation func
tions satisfy 

(54) 
and 

(55) 

For small values ofthe parameter b (classical limit), 
it is clear that 

p; ~ Ai2 + !b2
• 

This implies that, to order b2 , 

L = K + !b2J. 

(56) 

(57) 

Therefore, L has all nonnegative elements if K does 
(or even if K has very small, negative off-diagonal 
elements). It follows that for sufficiently small 
values of b, a sufficient condition for (51) and (54) to 
be nonnegative is that K be a nonnegative matrix. In 
turn, a sufficiency condition for K to be nonnegative 
is that J have nonpositive off-diagonal elements 
(Lemma 1). 

For very large values of the parameter b (extreme 
quantum limit), 

and, apparently, 
L ~ bKt, 

(58) 

(59) 

where Kt is the unique (positive-definite) square root 
matrix of K. If Kt has all nonnegative elements, then 
the same is true for K. Therefore, if for very large 
values of b, (x!xm)qm ~ 0 for all (I, m), then the 
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corresponding classical result is implied. A meaning
ful discussion of the converse problem requires an 
answer to the following. 

Question: Suppose the positive-definite matrix K 
has the property Kii ;::: 0 for all pairs (i,j). What then 
is implied about the algebraic signs of (Kf)ij for 
i ¢ j? 

For intermediate values of b one is led to questions 
of the following nature. Suppose that K and L are 
the two commuting, real-symmetric matrices defined 
above, with eigenvalues {Ai2

} and {bAil coth bAi}, 

respectively. 

Question (i): If K has all nonnegative elements, what 
then is implied about the algebraic signs of Lii for 
i ¢j? 

Question (ii): If J = K-I has nonpositive, off
diagonal elements, what then is implied about the 
algebraic signs of (L-I)ii for i ¢ j? 

Question (iii): The matrix L - K has eigenvalues 
{bAi1C(bAi)} , where C(x) is the Langevin function: 
C(x) == coth (x - X-I). If K has all nonnegative 
elements, what then is implied about the algebraic 
signs of (L - K)ii for i ¢ j? 

It appears that an understanding of correlation 
inequalities for quantum mechanical, coupled oscilla
tors requires answers to well defined, but apparently 
nontrivial, mathematical questions such as those 
above. 

Note added in proof· (a) S. Sherman [J. Math. Phys. 
11, 2480 (1970)] has recently obtained necessary and 
sufficient conditions on the correlation functions to 
guarantee that an Ising magnet with two-body inter
actions, in a nonnegative external magnetic field, is a 
ferromagnet, i.e., Jii ;::: O. This relates to Sec. VIE 
of the present paper. 

(b) For the coupled-oscillator problem, suppose 
that Kzm :::;; 0 for 1 ¢ m. Then, by Lemma 1, Jii ;::: 0 
for all i, j. Therefore, due to Eq. (30), a sufficient 
condition for "antiferromagnetic coupling" (Ji ; ;::: 0) 
for the coupled- oscillator problem is (XZxm)c = 
(xlxm) - (xl)(xm) :::;; 0 for 1 ¢ m. Furthermore, The
orem 4 provides necessary and sufficient conditions 
on the matrix with elements (xlxm)c for "antiferro
magnetic coupling." 
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APPENDIX 

Here the objective is to derive Eq. (16), beginning 
with Eq. (13). From (5), (10), and (13) 

(xzx m) = (2,8)-1(1 + 15zm) 

x [0 In (det J) -,8f fH;Hk(OKik)J. 
oJlm ,~1 k~1 oJzm 

(AI) 

The first derivative on the right hand side can be 
written 

o In (det J) = (det Jrl i det J'(i), (A2) 
oJlm i~l 

where J'(i) is obtained from J by replacing the ith 
column, {Jki ; i = 1,··· ,N} by {OJkiloJzm ; k = 1, 
... ,N}. Therefore det J'(i) = 0 unless i = / or 
i = m. But det J'(/) and det J'(m) are simply the ml 
and 1m cofactors, respectively, of J [if 1 = m, of 
course, only one term in (A2) is nonzero], and it is 
well known that J-I = K is such that Kml = 1m 
cofactor of J x (det J)-l. Furthermore, since J is 
symmetric, so is K. (See the last paragraph of Sec. II.) 
Therefore, 

oln(detJ) = (2 _.Il ) 
::l UZ m Kim· 
uJZm 

(A3) 

In order to evaluate the second set of terms on the 
right-hand side of (AI), one needs OKikloJlm . This 
can be obtained by first differentiating 

N 

!,JrkKki = 15ri 
k~l 

with respect to Jim, which gives 

N 

- !,Jrk(OKki/oJzm) 
k~1 

N 

(A4) 

= !, Kd( 15rl15km + 15rm15kz)(l - 151m) + 15rl~kl~zm]. 
k~l 

(AS) 

Multiplication of (AS) by Kri and subsequent 
summation over r yields 

OKij 
OJ

zm 
= -(KilK;m + KimKil)(1 - 15zm) - KilKjl15zm · 

(A6) 

Using (A6), and (A3) in (AI), one obtains (16). 
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A new scalar-tensor theory of gravitation is formulated in a modified Riemannian manifold in which 
both the scalar and tensor fields have intrinsic geometrical significance. This is in contrast to the well
known Brans-Dicke theory where the tensor field alone is geometrized and the scalar field is alien to the 
geometry. The static spherically symmetric solution of the exterior field equations is worked out in 
detail. 

1. INTRODUCTION 

Recently, there seems to be a renewed and serious 
interest in a scalar-tensor theory of gravitation, and 
attempts are under way to check experimentally 
(using the Mariner satellites) the theory suggested by 
Brans and Dicke,l as opposed to the purely tensor 
theory of Einstein. There is, however, a fundamental 
difference between the theory of Einstein and that of 
Brans and Dicke. With the general theory of relativity 

Einstein has introduced in physics a new principle: 
the principle of geometrization of physics. The general 
theory, in fact, succeeds in geometrizing the phenom
enon of gravitation by abandoning the flat space
time of special theory and identifying the metric tensor 
of a Riemannian space-time with the gravitational 
potential. It is well-known ,2 however, that it is 
possible to construct meaningful theories of gravita
tion in a flat space-time, where gravitation, described 
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either by a tensor field or even a scalar field, does no~ 
have any geometrical significance whatsoever. In the 
theory of Brans and Dicke we have a mixture of these 
two approaches because, whereas the tensor field is 
identified with the metric tensor of a Riemannian 
geometry, the scalar field remains alien to the ge
ometry. It would therefore seem more in the spirit of 
Einstein's principle of geometrization to have a 
scaiar-tensor theory of gravitation, where both the 
scalar and tensor fields have more or less intrinsic 
geometrical significance. 

In this paper we suggest the framework of such a 
theory. While attempting to unify gravitation and 
electromagnetism in a single space-time geometry, 
Wey!3 showed how one can introduce a vector field 
with an intrinsic geometrical significance. Recall that 
the geometrical structure of a differentiable manifold 
is determined by (i) an affine connection characterized 
(in a local coordinate system xl.) by its components 
r~/l' which are defined by the change due to infinites
imal parallel transfer of a v:ector ~Il from a point 
P(xll) to p' (xll + dxll), 

(Ll) 

and (ii) a metrical connection characterized by the 
metric fundamental tensor gilA which is defined by the 
measure of length; of ~fl, 

; == gfll.~/l;A. (1.2) 

Riemannian geometry is characterized by the 
symmetry of r~/l' that is, r~/l == rli~ and by the' 
condition that the length of a vector should not 
change under parallel transfer, i.e., 

b; = o(g/lA"e) = O. (1.3) 

By this condition the Riemannian connection is 
uniquely determined by the metric tensor 

r:p = {~}, (1.4) 

where on the right-hand side are Christoffel symbols of 
the second kind. Note the asymmetry between (1.1) 
and (1.3). Weyl generalized the notion of a Rie
mannian metrical connection in the following manner. 

With each vector ;/l there is an associated measure of 
length given by the quadratic form; = g"A;fl~;'. Two 
vectors ~" and 'f}" have therefore the same length if 
and only if ~ = 'fJ. Now the quadratic form is com
pletely determined only when one specifies a nonzero 
scale (or gauge) factor of proportionality. At every 
point of the manifold one has, therefore, the possibility 
of a change of scale (i.e., a recalibration) or a gauge 
transformation. In a Weyl manifold it is not sufficient 
for the metrical connection to have a measure 

determination at every point; every point must also be 
metrically related to the surrounding neighborhood. 
The concept of metrical relationship is analogous to 
that of affine relationship. The metrical relationship is 
determined by specifying the change in the measure of 
length of a vector due to an infinitesimal parallel 
transfer. There exists a geodesic gauge in which there 
is no change in the measure of length of ;Jl trans
ferred parallel from P(xll) to P' (xll + dx"). In an 
arbitrary gauge, however, ; is assumed to change [in 
contrast to (1.3)] according as 

(1.5) 

where rpJl is a vector function characterizing the 
manifold. The metrical connection of a Weyl manifold 
is therefore characterized by two independent quan
tities gilA and 1>1l' relative to a reference system (== co
ordinate system + gauge). If one makes a gauge 
transformation, that is, recalibrates all lengths, 
; -+ ~ = M, where A = A(X) in general, rpll and g"l. 
transform in the following manner: 

gil). -+ gil). == AgIlA ; rp" -+ rp" - A-I A.", (1.6) 

where A.Jl = oAloxfl . The components of affine 
connection r~p of a Weyl manifold are now determined 
through (l.l) and (1.5) by g,,). and 1>,,: 

r~/l == {:~} + t(o~rp/l + blirp~ - g~/lrpll), (1.7) 

where rp" = g"Arp).. In Weyl's unified field theory the 
vector field rp" is identified with the vector potential of 
an electromagnetic field. Weyl's hypothesis of non
integrability of length transfer had been criticized by 
Einstein because it implies that the frequency of 
spectral lines emitted by atoms would not remain 
constant but would depend on their past history. 

Lyra5 has suggested a modification of Riemannian 
geometry which may also be considered as a modifica
tion of Weyl's geometry. In Lyra's geometry Weyl's 
concept of gauge, which is essentially a metrical 
concept, is modified by the introduction of a gauge 
function in the structureless manifold. 

The displacement vector PP' between two neighbor
ing points P(x") and P' (x" + dx"), in Lyra's geometry, 
has the components ;Jl = XO dxJl , where XO(x) is a 
nonzero gauge function. The coordinate system x" 
together with XO form a reference system (XO; x"). A 
general transformation of reference systems is given by 

x" -+ x'" == Xfl'(Xl.), (XO; Xll) -+ (XO'; Xll') 
with 

(1.8) 
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Under (1.8) a multicomponent tensor 
transforms as follows: 

CP1""PS: = As-rAP1' .•. APs'A"l, ... A"r,~Pl:::P8 (1.9) 
~0'1""0'1" PI Ps 0'1 O'r 0'1 aI" 

where A = xO'/xo. The factor As-r arises as a conse
quence of the introduction of the gauge function. 

In an affinely connected manifold the components 
of the affine connection r~{i can be considered to arise 
as a consequence of general coordinate transforma
tions in the following manner.1l Let us suppose that, in 
a local coordinate system x ll , a vector ell is constant
that is, e~A = O. Then, in another arbitrary local 
coordinate system x"', we have in the usual case 
(e" = A~,el'') 

(1.10) 
where 

:l 1" 
1" I' Il' }1' uAI' 

rV'A' = -AvAIl'A" A}1,A' = ox)! . 

Another way of expressing the fact that el' is constant 
would be to say that (1.10) is valid in all coordinate 
systems, but that reA = 0 in the original coordinate 
system Xll. The transition from an integrable affinely 
connected manifold to a nonintegrable one (thereby 
from ordinary derivative to covariant derivative) is 
made by assuring that reA ¥- 0 in general. 

Now a vector ~Il in Lyra's geometry transforms as 

ell' = J.A~'e". (1.11) 

If e~A = 0 in the reference system (Xo; Xll), then, in 
the reference system (XO' ; Xll') we have 

0' /:Il' rll' /:V' ~,/,. /:Il' 0 (1jx hx + V'A'~ - 2't'",~ = , (1.12) 
where 

r ll' -1 A I' All' . ,/,. _ 1.. 0 In }.2 
v').' = x O' v' Il.A" 't'A' - XO ox'" . 

The parallel transfer of a vector ~Il in Lyra's 
geometry is therefore given by 

(1.13) 
where 

r- II - rl' - 1S;.1'J. 
~P - ap 7.i;U~'t'p. 

Note that the r~{i are not symmetric although r~{i = 
r p", . The components of the generalized affine 
connection are thus characterized not only by r~p 
but also by o/>P which appears as a natural consequence 
of the formal introduction of the gauge function in 
the structureless space. 

The metric or the measure of length of the displace
ment vector el' = XO dxll between two points P(xll) 
and P'(xll + dxll) is given by the absolute invariant 
(that is, invariant under both gauge and coordinate 
transformations) 

(1.14) 

where gil). is a symmetric tensor of second rank. The 
parallel transfer of length in Lyra's geometry is 
integrable (as in Riemannian geometry) in contrast 
to Weyl's geometry; that is, 

b(g"Ael'e) = o. (1.15) 

From (1.13) and (1.15) it follows that 

r~p = (1jXO){~} + Hb~cp{i + bffCPa; - g",pcp"). (1.16) 

Thus apart from the factor l/xo, (1.16) is identical 
with the components of affine connection in Weyl's 
geometry, not, however, r~p. In Lyra's geometry we 
thus have a vector field with an intrinsic geometrical 
significance without the inconvenience of noninteg
rability of length transfer of Weyl's geometry. 

In the next section we give an invariant formulation 
of Lyra's geometry. In Sec. 3 we take over the ge
ometry as the framework for a theory of gravitation. 
The field equations are derived from a variational 
principle constructed from the scalar curvature. 
Variation with respect to gilA furnishes the basic field 
equations, whereas variation with respect to CPa; 
constrains CPa; to be basically the gradient of the gauge 
function xo. The basic field equations then contain 
only the metric tensor gilA and the scalar XO and turn 
out to be a special case of the Brans-Dicke field 
equations, if Xo is identified with the scalar cp in the 
Brans-Dicke theory. We next consider the static 
spherically symmetric solution in some detail. 

2. A MODIFIED RIEMANNIAN MANIFOLD 

Let M be a connected, second countable Hausdorff 
space. By a local reference system on M we shall 
mean a triple (Ui , "Pi ,j;) where 

(i) Ui is an open subset of M, 
(ii) "Pi is a homeomorphism of Ui onto an open 

subset of fR n for some integer n, and 
(iii) J;: Ui ---+ fR - {O} is a (nonzero) gauge function 

on Ui' 
We shall say M is an n-dimensional COO Lyra 

manifold if there exists a collection of local reference 
systems {(Ui , "Pi ,j;); i E I, an index set} on M such 
that 

(i) UiE/ Ui = M, 
(ii) whenever Ui n U; ¥- cP, the maps "Pi 0 "Pi! 

and "P; 0 "Pi! are COO on their domains of definition, 
(iii) for each i E I the map j; 0 "Pi! is a Coo function 

on "Pi(Ut ), and 
(iv) the collection is maximal with respect to (i), 

(ii), and (iii). 
The notions of Coo functions and tangent space 

T m(M) at a point mE M can be introduced in the usual 
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manner? on a Lyra manifold M. Consider now a 
reference system (Ui , tpi ,J;) on M. If m E Ui , let 
tpi(m) = {x1(m), .•. , xn(m)} = x be the local co
ordinates of m. In local coordinates let the gauge 
function J; 0 "Pil:"P.(Ui ) -+ !R - {O} be denoted by 
xo:x H XO(x), which, together with the coordinate 
map, form (in local coordinates) the reference system 
(Xo; Xll), ft = 1, ... ,n. A local reference system 
induces a natural basis 

{eim) = [xO(x)rl(O~I')J in Tm(M), 

so that a tangent vector {E Tm(M) can be written as 
{ = rxl'el'(m), rxP E !R. 

Let B(M) = {em, ') I m EM, {E Tm(M)} and 

71':B(M)-+ M 

be the projection map defined by 71'(m, {) = m. The 
mapping v\: (m, ') H (Xl, ... , Xn; rxl , ... , rxn) is 
then a homeomorphism of 71'-l (U.) C B(M) onto an 
open subset of !R2n. Let (Uj , tpj,h) be another local 
reference system such that Ui n Uj =;1:.1> and (m, ') E 

71'-1(Ui n Uj). If "Pj(m) = {xl'(m), ..• , xn'(m)} = x', 
xo' = h 0 "Pjl, and 

iii (m r) - (Xl' .•• xn'. rxl ' ..• rxn') Ii ,f:" - , , , , , , 

where' = rxll'el',(m), it follows that 

1" = (XO(X) )-1 AI"( ) I' AIl'(m) = axIl' I 
rx 0'( ') I' m rx , I' ~xl' 'm' X X U 

(2.1) 
and the transformation 

( 
, " , 

(Xl ••. Xn • rxl ••• rxn) H Xl .,. Xn . rxl ••• rxn) , , , " "'" 
is Coo. B(M) can thus be made into a 2n-dimensional 
Coo manifold, with coordinate neighborhoods 

([71'-I (Ui ), Vii]}' 

We shall call B(M) the Lyra tangent bundle of the 
Lyra manifold M. A Coo vector field on an open subset 
U of M is a Coo map X: U -+ B(M) such that 71' 0 X 
is the identity map on U. In a local reference system 
X can be expressed as X = xl'(x)ell , where el' = 
(xO)-lXO-lojoxll and the components Xl'(x) transform 
as 

(2.2) 

Tensor fields can be defined in an analogous manner, 
and it can thus be seen that, under transformation of 
local reference systems (1.8), the components of a 
multicomponent tensor field transform as in (1.9). 

We shall denote by T(M) the linear space of all C'X> 
vector fields and by COO(M) the set of all Coo functions 
on M. An affine connection on a Lyra manifold can be 

defined in the normal way, that is, as a bilinear 
mapping V: T(M) x T(M) -+ T(M), such that, for 
every! E Coo(M) and arbitrary X, Y, Z E T(M), the 
following two conditions are satisfied [writing 
V xYfor VeX, Y)]: 

(i) VtxY=!VxY, 

(ii) V x/Y = fV x Y + X(f)Y. 
(2.3) 

In a local reference system (Ui , "Pi ,J;) the connec
tion is specified by Coo functions :r:fJ where 

V N rl' N 'la. = "fJel" (2.4) 

In another local reference system we have 

V.fJ,e", = V ;.-lAp,fJ./A-1A:,el1) = r;:fJ,el'" 

The properties (2.3) then imply the following 
transformation law for the :r~p; 

If we set 

r;p = r:p - i(}~1>p, 

we obtain the following transformation laws: 

r;:fJ' = A-l(A:'A:,A~,r:fJ + (xO)-IA~'A;"fJ')' 
1>fJ' = A-I A~,{ 1>p + (xOrl(ln A2),fJ}' 

(2.5) 

(2.6) 

In a local reference system the connection is thus 
characterized by the two sets of Coo functions r~p 

and 1>fJ' which transform as in (2.6). 
Given a connection V on a Lyra manifold, we can 

define a pseudoconnection V as follows. Let reM) 
denote the set of all vector-valued functions on M 
whose components transform as a vector field under 
coordinate transformations only (but not necessarily 
under gauge transformations). Then V is a bilinear 
mapping V: T(M) x T(M) -+ reM) defined in the 
following way. If in a local reference system V is 
specified by r:fJ - i o:1>fJ' then VelIZ = r:ll" The 
torsion of the pseudoconnection V is a mapping 
Torv-: T(M) x T(M) -+ T(M) given by 

TorV- (X, Y) = V xY - VyX - [X, YJ, (2.7) 

where [X, Y] is the Lie Bracket of X and Y. By a Lyra 
connection on M we shall mean a connection V with 
Torv == 0 which implies that r~fJ = q". Note that 
this does not mean that the original connection V is 
symmetric. 

An autoparallel (or geodesic) of a connection V is a 
curve s -+ xes) whose tangent vector is transferred 
parallel to itself. In a local reference system it is a 
curve given by xl'(s), with tangent vector components 
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~Il = xO(dx"/ds), satisfying the differential equation 

d2 Il d "'d (J 
XO -2.. + (xO)2r:(J 2-.-£ 

ds2 ds ds 

- HXO)2( CP'" - J",) d~'" ~: = 0, (2.8) 

where 
(2.9) 

The covariant derivative of a mixed tensor field 
component ~~~:::~: in a local reference system is given 
by the corresponding formula in Riemannian ge
ometry except that r~(J is replaced by r~(J and ajax'" 
by (XO)-la/aX"', that is 

8 

- ~ r;,i"'~:::~::' - i(r - s)cp"'~:::' (2.10) 
A=l 

The curvature tensor of a Lyra connection V can be 
regarded as a mapping 

K: T(M) x T(M) x T(M) -+ T(M) 
given by 

(X, Y,Z)-+K(X, y)Z = VxVyZ - VyVxZ 
- V[x.y]Z. (2.11) 

In a local reference system if we set 

K(e", , e(J)e,i = K1:(Jell , (2.12) 

the components of the curvature tensor are given by 

Kil = ( O)_2(a(XOr~(J) _ o(XOr~",») 
Aa(J X ox'" ox(J 

+ r~J\~(J - r~l~",. (2.13) 

The curvature tensor K can be written as the sum of 
two tensors K = R* + <1>, where 

R*(X, Y)Z = VxVyZ - VyVxZ - V[x.YlZ 
(2.14) 

and 
<I>(X, Y)Z = K(X, Y)Z - R*(X, Y)Z. (2.15) 

The components of R* and <I> in a local reference 
system are 

R!:p = (xOrl[r~(J.1X - n",.(J] + r~",r~/l 
- r~fJr~", - t( J«r~p - J(Jr~IX)' 

<l>i,,(J = !~N(xOrl[c/>",.p - c/>fJ.,,] 

so that 
- t( ¢",c/>(J - ¢pc/>,,)}, 

(2.16) 

(2.17) 

K~,,(J = Rt:fJ + <l>i",(J' (2.18) 

(2.16) and (2.17) are, for n > 2, uniquely determined 
by the curvature tensor (2.13). Rt:/l and <l>i«fJ have the 
following symmetry properties: 

where we have set <l>i,,(J = t~~<I>IXfJ" Kf,,(J also satisfies 
the usual Bianchi identities 

V "K~P1 + V (JK~y" + V yK~,,(J = O. (2.20) 

A metric structure on M is specified by a sym
metric tensor field of type (0, 2), whose components 
in a local reference system are given by 

gil). = g(e
ll

, e).). (2.21) 

The usual metric is therefore 

(2.22) 

As in Riemannian geometry a "Riemannian" Lyra 
connection V is uniquely determined by the metric 
field g if one assumes 

Z[g(X, Y)] = g(V zX, Y) + g(X, V z Y) (2.23) 

for every X, Y, Z E T(M). This, together with the 
condition Tor-V == 0, determines a unique Lyra 
connection in terms of the metric tensor. In a local 
reference system (2.23) and Torv == ° imply (1.16), 
i.e., 

r:(J = (xOrl{~} + !(~:c/>(J + b~<fr" - g,,(Jc/>/)' (2.24) 

Lyra's geometry is therefore characterized by the 
two fundamental entities gil). and CPa' the latter arising 
naturally as a result of the formal introduction of gauge 
in the geometrically structureless C'''' manifold. 

A geodesic of the metrical connection is an extremal 
curve x" = xll(t) given by 

~ f ds = ~ f (XO)2gll ,i d:; dlr)! dt = O. (2.25) 

The Euler-Lagrange equations for the geodesics turn 
out to be8 (taking t = s) 

d
2
x" + {I" } dx'" dxP 

ds2 ct.p ds ds 
XO 0 0 0 dx" dx(J 

+ '2 (~:c/>(J + ~~c/>" - g"(Jc/>Il) ds as = 0. (2.26) 

On the other hand, in view of (2.24), Eq. (2.8) for 
an autoparallel curve becomes 

Xo d
2
x" + [(XO)-l{ I" } 

ds2 ct.{l 

+ t( b:cpp + (j~c/>", - g",p#,) JcXO)2 d~" ~: 

= t( C/>" - ¢",)(XO)2 dx" dXIl. (2.27) 
ds ds 

Thus in Lyra's geometry, in contrast to the situation 
in Riemannian geometry, the auto parallels associated 
with the affine connection do not coincide with the 

R!:p + Rtff .. = 0, <I>",p + <l>p/X = 0, (2.19) geodesics. which arise from the metric. This is, by the 
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way, also the case in Weyl's geometry. A comparison tensor is 
of (2.26) with (2.27) shows that a sufficient condition f:l 
h h . 6 K(-g)~xo dx1 ••• XO dx4 = 0, t at t e two types of curves be the same IS (3.2) 

(2.28) 

The above condition is invariant under gauge 
transformations because Ja transforms exactly as cP,. 
when Xo -+ xo'. 

A Lyra manifold where (2.28) is valid, is therefore 
characterized by gil;' and the scalar xo. 

If one substitutes (2.24) in the expression (2.13) for 
the components of the curvature tensor and sets 
fl = fl, one obtains for the contracted curvature 
tensor (n = 4) 

K;.,. = K1,.p = K Ua ) + K[;'a] , 

Kc;.a) = K(a).) 

= (xOr2R"a + HXO)-l(cp).;" + CPa;).) 

+ texO)-lg;.aCPfp - HA,. + HJ;.CPa + JaCP;.) 

+ ig;'aCPpCPP + !g;'atpcpfl, (2.29) 

K[).,,] = - K[a).] 
0-1 ../,. 1 ../,. 0 

= !ex) (CP;',a - Y'd) - iCY';'Y'a - CPaCP;.), 

where R).a is the Ricci tensor of Riemannian geometry 
and cP).;" the covariant derivative of CP;. with respect to 
the Christoffel symbols {,:p}. For n = 4, the curvature 
scalar is given by 

K = g;'!J;K;.a = (xOr2R + 3(XO)-lcp~ 
o 

+ %CPaCP" + %CPaCP", (2.30) 

where R is the Riemannian curvature scalar. If we 
now choose the normal gauge XO = 1, then (2.30) 
becomes 

K = R + 3cp~" + !cp"cpa, (2.31) 

which is identical with the corresponding curvature 
scalar of Weyl's geometry. 

3. A SCALAR-TENSOR THEORY OF 
GRAVITATION 

We now consider a four-dimensional Lyra manifold, 
endowed with a hyperbolic (i.e., with signature 
+, -, -, -) metric tensor, as the framework for a 
scalar-tensor theory of gravitation. We refer to 
Dicke's paperl for various arguments for a scalar
tensor theory of gravitation. 

The exterior (vacuum) field equations are to be 
derived from a variational principle 

15 f 'U) dx1 
••• dx4 = 0, (3.1) 

where the integrand is an absolute invariant. The 
simplest variational principle involving the curvature 

where the gauge factors make the integrand an absolute 
invariant under both coordinate and gauge transforma
tions. Other possible invariants are 

'U) = W( - g)t(xo)'. 

K K[Aa] 

(

g).aK{).a) , 

W [;'a] , 

= K b )'aK K K[)."] (3.3) a + g (AfJ.) + C [Aa] , 
a, b, C constants. 

In this paper we shall consider only (3.2) and 
heuristically examine its consequences. If we substitute 
(2.30) in (3.2) and consider independent variations of 

ga/J and CPI1.' we get 

f {(xo)2b[R( - g)t] + 3(xO)3b[ cP~aC - g)!] 

+ !(xo)'b[ cPfJ.cp"( - g)l] 

+ t(x0),b [/"cpfJ.( - g)t]) dx1 
••• dx4 

= f{-[RfJ.P - tgaPR + t(xO)2cpacpp 

- !(XO)2gfJ.P CPvcpv _ f(XO)2 gfJ.p Jvcpv 

+ t(XO)2J acpP](xO)2( - g)!bga.fJ 

+ [3cpa + tJ a](xOt( - g) !ocpfJ.} dx1 
••• dx4 

= O. (3.4) 

The exterior field equations are therefore 

Rap - tgapR + t(xO?CPaCPp - !(XO)2g!J;pCPvcpv 
- !(XO)2g,.pJvcpv + t(XO)2JfJ.cpp = 0, (3.5) 

3cp,. + tJa = O. (3.6) 

The two sets of equations can be combined into the 
following single set of equations: 

Ra.p - ig",pR - w(xO)-2x~ax?p 

+ tw(xOr2gapx?vxO,V = 0, (3.7) 

in view of (2.9), where we have set w = 1-
The interior (matter) field equations are then 

simply 

R - 19 R - W(XO)-2XO XO + 1 w(XO)-2g XO xO, v ap 2" fJ.p ,a. ,p 2 ap ,v 

= - [87TGf(xO)2]Tap. (3.8) 

If we compare (3.8) with the interior field equations 
of Brans and Dicke1.9 

RaP - tg"pR - wcp-2CP,aCP,p + twcp-2gapCP.v1>·v 

= -(87T/c2cp)Tap + 1>-l(1).a;P - gapOcp), (3.9) 

we see that our theory can be regarded as a special 
case of (3.9), where the Brans-Dicke scalar function 1> 
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satisfies 

r/>.~;P - g~pDr/> = 0, (3.10) 

and the Brans-Dicke constant w = t. However, as 
we shall see later, the geodesic equations of motion 
are different in our case, so that the difference between 
our theory and the Brans-Dicke theory is not so 
straightforward. 

We next consider the static spherically symmetric 
solution of the exterior field equations (3.7). So let 

Xo = xO(r) 
and 

(' ° ° o ) g., ~ ~ 
_eA 

° ° 
° _r2 ° ' (3.11) 

° ° - r2 sin2 () 

where 

A = A(r), v = v(r) 

in a "polar" coordinate system (t, r, e, r/». Equations 
(3.7) then reduce to the following set: 

-v'/r - (1 - e'')lr2 - (wI2)f(r) = 0, (3.12) 

-r2e-A[v"/2 - A'v'/4 + v,2/4 + (v' - A')/2r] 

+ (w/2)r2e-Af(r) = 0, (3.13) 

eV-A[-A'lr + (1 - eA)lr2] - (wI2)eV- Af(r) = 0, 

(3.14) 
where we have put 

fer) = [xO'(r)lxO(r)]2. 

From (3.12) and (3.14) we have 

v' + ).' + wrf(r) = 0, 
or 

).' = -v' - wif(r). 

Substituting (3.17) in (3.13), we get 

(3.15) 

(3.16) 

(3.17) 

rv" + 2v' + rv'2 + (w/2)v'r''j(r) = 0, (3.18) 

which can be solved for v in terms of rand fer). 
Setting {t = eV, we get from (3.18) 

{t" + {t'g(r) = 0, (3.19) 
where 

g(r) = - [21r + (w/2)rf(r)]. (3.20) 

Then 
{t = eV = D + Cr/>(r), (3.21) 

where 

r/>(r) = J exp (J g(r) dr) dr (3.22) 

and D and C are integration constants. 
On the other hand, integration of (3.17) gives a 

relationship between v and A, 

eA = A exp ( - J wrf(r) dr)e-V, (3.23) 

where A is another integration constant. Equations 
(3.20) and (3.22) enable us to express everything in 
terms of r/>(r) and its derivatives, as follows: 

exp ( - f wrf(r) dr) = r4r/>'(r), (3.24) 

(wI2)f(r) = -21r2 - r/>"(r)/rep'(r). (3.25) 
Thus 

eA = Ar4[ep'(r)]2/[D + Cep(r)], (3.26) 

Finally, substituting (3.21), (3.25), and (3.26) in 
(3.12), we obtain the following nonlinear differential 
equation for r/>(r): 

(D + Cr/»(l + rep"N') + Ar4ep'2 - Crep' = ° 
or 

(D + Cep)(rr/>')' + Ar4ep'a - Crr/>'2 = 0. (3.27) 

Apart from the special Schwarzschiid solution, we 
have been unable to obtain a solution of (3.27) in a 
closed form. However, a formal series solution of the 
form r/> = 1~=o anr-n exists, although the question of 
convergence of such a solution remains open. Details 
of the solution and recurrence formula for an are 
relegated to the Appendix. 

The general solution of the form ep = 1~=o anr-n 

is as follows: 
aO arbitrary, 

a l ¢. 0, Aa~ = D + Cao, 
a2 = 0, 

aa arbitrary, 

an' n > 3, are determined in 
terms of ao and aa by a welI
defined recurrence relation. 

(3.28) 

If we now impose the usual boundary condition at 
infinity, i.e., e v -+ 1 as r -+ 00, we get 

D + Cao = 1. 
Then, also 

A Ar4(ai/r4 + ... + ... ) 
e = -+1, 

D + C(ao + allr + ... + ... ) 
as r -+ 00. A special case of (3.28) is 

ao arbitrary, 

(3.29) 

al = ± [(D + CaoIA)]! , (3.30) 

an = 0, n> 1, 

which together with (3.29) gives the Schwarzschild 
solution 

eV = 1 ± Cf.jAr, 

e). = 1/(1 ± CI.j Ar). (3.31) 
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From (3.15) and (3.25) we get for the gauge function Then 

xO(r) = const 
OCJ 

f = - L (n - 1)an_ 1r-n, (A2) 

X exp f{-[(4/wr2) + (2/wr)(4>"N')])! dr. (3.32) 

In the Schwarzschild case, thus, XO = constant, 
since 4>"N' = -2/r. This is, of course, also clear from 
the field equations (3.12)-(3.14). 

It is interesting to note that eV does not contain any 
r-2 term. The effect of ,-n, n > 2, terms on gravita
tional red shift (which is determined solely by eV

) 

experiments is, of course, too small to be detected at 
present. 

To discuss both the pro blem of perihelion precession 
and bending of light rays, it is necessary to have an 
equation of motion of test bodies. As we have seen in 
Sec. 2, the geodesics of metrical connection are not 
identical with the autoparalleis of affine connection. 
In view of (3.6), however, the two are practically the 
same, i.e., they are given by 

d
2
x ll 

{ f1, } dx
ll 

dxP ° 0 dx ll dx
ll 

-+ --+(Jx4>a;--
ds2 I'.I.(J ds ds ds ds 

X
O dx ll dxP 0 

- 1'.1."2 gllP ds ds 4>1l = 0, (3.33) 

where for geodesics 1'.1. = (J = 1 and for autoparallels 
(J =!, 1'.1. = -to Long ago EddingtonlO considered 
the effect of non-Schwarzschild terms in the usual 
geodesic equations of general relativity. The combined 
effect of non-Schwarzschild terms in the metric and 
the extra terms in (3.33) are being investigated. 

In conclusion we would like to point out that the 
variational principle (3.2) and the consequent field 
equations are probably too simple to provide an 
alternative to either the general theory of relativity or 
Brans-Dicke theory, which is significant from an 
experimental point of view. In this paper we have 
strived merely to provide a framework for an alter
native theory should new experimental results make 
the general theory unsatisfactory. 
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APPENDIX 

Consider a series solution of (3.27) of the form 

(AI) 

n=2 
00 

(rr//), = L (n - 1 )2an_1r-n, 
n=2 

(D + C4»(r4>')' 
00 

= L D(n - 1)2an_lr-n 
n=2 

(A3) 

+J2(~:cain - k - 1)2an_k_l)r-n, (A4) 

Cr4>,2 = n~aC(~:(k - l)ak_l(n - k)an_k)r-n, (AS) 

4>'3 = - (J2 (n - 1 )an_lr- n 
) 

X [n~J~:(k -1)(n - k - l)ak_lan_k_l)r-n]. 

(A6) 

X C~:2(k - 1)(n - 1- k + 3)ak_1an_H +3)}-n. 

(A7) 

Substituting (A4), (AS), and (A7) in (3.27), we get, 
on equating coefficients of 

r-2: al(D + Cao) - Aa~ = 0, 

or a o arbitrary, a l ¥ 0, 

Aai = D + Cao; 

r-a: a2[ -2(D + Cao)] = 0, 

or a2 = 0; 

r-4
: aa[9(D + Cao) - 9Aai] = 0, 

or aa arbitrary; 

r-n
, n > 4; the following recurrence relation 

for an (n ;;::: 4): 

an_l[(D + Cao)(n - 1)(n - 4)] 
n-l 

- Aal L(k - 1)(n - k + l)ak- lan-k+l 
~3 . 

n-I 

- A L [(l - l)a l _ I ] 

1=3 

(
n-I+2 ) 

X k~2 (k - l)(n - 1 - k + 3)ak - lan- 1-k+a 

n-l 

- C L an-Ial-l(n - l)(21 - n - 1) = 0. (A8) 
1=2 
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By means of an expansion in powers of the magnetic field, where classical statistics are assumed, an 
expression is found for the gauge-independent equilibrium distribution properly corresponding to the 
ordinary Boltzmann transport equation. The validity of the new distribution is demonstrated by deter
mining the current density induced in a simple system of free electrons simultaneously accelerated by 
crossed electric and magnetic fields and comparing the current with that obtained using the gauge
dependent density matrix formalism. To terms of second order in the magnetic field, the results are shown 
to be in exact agreement. 

1. INTRODUCTION 

In preceding work the relationship between the 
quantum theory of electrical transport in a magnetic 
field and the corresponding Boltzmann equation was 
established on the basis of a simple model,1-3 By 
making use of operator methods alone, it was 
shown that the exact gauge-dependent Liouville 
equation for the density operator could be trans
formed into a completely gauge-independent equation 
satisfied by a new density operator. The diagonal 
elements of this new gauge-independent density opera
tor were found to satisfy the ordinary Boltzmann 
transport equation if certain higher-order corrections 
are neglected.4 •5 

The transformation to the gauge-independent 
transport formalism is apparently accomplished 
without approximation, and the physical content of 
the resulting gauge-independent transport equations 
should be identical in all respects with that implied 
by the initial gauge-dependent equations. To clarify the 
role of the magnetic field in its relationship to the 
Boltzmann transport equation and at the same time 
demonstrate more explicitly the equivalence of the 
gauge-dependent and independent transport formal
isms, an investigation of electrical transport in a 
simple system is carried out. The system considered is 
that of free electrons simultaneously accelerated by 
constant, uniform, and mutually perpendicular elec-

tric and magnetic fields. Interactions of the electrons 
with one another and with a scattering potential are 
neglected. For simplicity the electrons are assumed 
to obey ordinary Maxwell-Boltzmann statistics, 
but the treatment can readily be extended to include 
Fermi-Dirac statistics. 

In Sec. 2 an expression for the gauge-independent 
equilibrium distribution is developed in ascending 
powers of the magnetic field from its known relation
ship to the gauge-dependent equilibrium density 
operator. Using this distribution function, we find an 
approximate solution to the Boltzmann equation in 
Sec. 3 and use it to calculate the resulting current 
density to terms of second order in the magnetic field. 
On the basis of the gauge-dependent density matrix 
formalism, the same current is determined exactly in 
Sec. 4 and found to be identical with that obtained 
in Sec. 3. 

2. GAUGE-INDEPENDENT EQUILIBRIUM 
DISTRIBUTION 

Consider a collection of noninteracting free elec
trons moving in the presence of constant, uniform 
electric and magnetic fields. The complete Hamiltonian 
for each electron in this system is 

HT = HB + HE' (2.1) 

where H B is the Hamiltonian of a free electron in a 
uniform magnetic field and HE the interaction with 
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1. INTRODUCTION 

In preceding work the relationship between the 
quantum theory of electrical transport in a magnetic 
field and the corresponding Boltzmann equation was 
established on the basis of a simple model,1-3 By 
making use of operator methods alone, it was 
shown that the exact gauge-dependent Liouville 
equation for the density operator could be trans
formed into a completely gauge-independent equation 
satisfied by a new density operator. The diagonal 
elements of this new gauge-independent density opera
tor were found to satisfy the ordinary Boltzmann 
transport equation if certain higher-order corrections 
are neglected.4 •5 

The transformation to the gauge-independent 
transport formalism is apparently accomplished 
without approximation, and the physical content of 
the resulting gauge-independent transport equations 
should be identical in all respects with that implied 
by the initial gauge-dependent equations. To clarify the 
role of the magnetic field in its relationship to the 
Boltzmann transport equation and at the same time 
demonstrate more explicitly the equivalence of the 
gauge-dependent and independent transport formal
isms, an investigation of electrical transport in a 
simple system is carried out. The system considered is 
that of free electrons simultaneously accelerated by 
constant, uniform, and mutually perpendicular elec-

tric and magnetic fields. Interactions of the electrons 
with one another and with a scattering potential are 
neglected. For simplicity the electrons are assumed 
to obey ordinary Maxwell-Boltzmann statistics, 
but the treatment can readily be extended to include 
Fermi-Dirac statistics. 

In Sec. 2 an expression for the gauge-independent 
equilibrium distribution is developed in ascending 
powers of the magnetic field from its known relation
ship to the gauge-dependent equilibrium density 
operator. Using this distribution function, we find an 
approximate solution to the Boltzmann equation in 
Sec. 3 and use it to calculate the resulting current 
density to terms of second order in the magnetic field. 
On the basis of the gauge-dependent density matrix 
formalism, the same current is determined exactly in 
Sec. 4 and found to be identical with that obtained 
in Sec. 3. 

2. GAUGE-INDEPENDENT EQUILIBRIUM 
DISTRIBUTION 

Consider a collection of noninteracting free elec
trons moving in the presence of constant, uniform 
electric and magnetic fields. The complete Hamiltonian 
for each electron in this system is 

HT = HB + HE' (2.1) 

where H B is the Hamiltonian of a free electron in a 
uniform magnetic field and HE the interaction with 
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the external electric field. We have 

HE = _1_p2 
2m 

(2.2) 

in which P == p - (e/e)A(r) and 

HE = -eE~x~. (2.3) 

In (2.2), e is the (algebraic) charge of the electron 
and A(r) is the vector potential. In (2.3), the E~, IX = 
1, 2, 3, are the components of the external electric 
field and the repeated index IJ. implies a summation 
over IX. The exact density operator for the system, PT' 
is determined by the gauge-dependent Liouville 
equation 

(2.4a) 

with H T given by (2.1). The expectation value of any 
observable quantity represented by the operator 
M(r, p - (e/e)A, t) is then given by 

AI = Tr {PTM}. (2.4b) 

It was previously shown that the gauge-dependent 
Eqs. (2.4) can be replaced by the gauge-independent 
equations 

a-
iii :tT = [Ho + HE' fiT] 

- 2~ {(p x B). [r, PT] + [r, PT] • (p x B)}, 
me 

(2.5a) 
and 

(2.5b) 

where PT is the new density operator, Ho = p2/2m 
is just the free electron Hamiltonian, and M = 
(r, p, t) is the appropriate operator corresponding to 
the observable.1 In carrying out the transformation 
of Eqs. (2.4) into Eqs. (2.5), it is useful to write PT 
in the form of an integral operator 

PT = L:eiP';RTC;, r, B, t) d;, (2.6) 

which can be taken to define the gauge-independent 
function R T(;, r, B, t). Then PT can be written 

PT = L:eiP';RT(;, r, B, t) d~, (2.7) 

where R T (;, r, B, t) is identical with the correspond
ing function appearing in (2.6). 

The usual procedure in treating problems of 
electrical transport is to assume the existence of a 
well-defined equilibrium distribution in the absence of 
an electric field and determine by means of perturba
tion theory the change in this distribution resulting 
from the application of an electric field. 6 Using this 

procedure and limiting ourselves to terms of first order 
in the electric field, we write 

(2.8) 
where P E is linear in the electric field and P is the new 
gauge-independent equilibrium density operator which 
satisfies the equation 

° = [Ho, p] - _e_ {(p x B) • [r, p] 
2mc 

+ [r, p]. (p x B)}, (2.9) 

since P is of course independent of time. Following 
Kohn and Luttinger,5 we set 

(2.10) 

where s is a suitably chosen frequency parameter so 
that Ell is zero at t = - 00 and reaches its full value 
E~ at t = O. Then PE must satisfy the initial condition 

(2.11) 

Eqs. (2.5a) and (2.11) can now be satisfied by taking 

PE = jest, (2.12) 

where J is independent of time. The quantity J is the 
correction to the equilibrium density operator at 
t = 0, which is what we want. Choosing a plane 
wave representation in which Ho is diagonal and 
assuming that s« wo, we find that the diagonal 
matrix elements of J satisfy the equation 

0= eEo. VkPk + eli (k x B). Vdk' (2.13) 
me 

where we have set Pk == Pkk and h == hk' Except for 
the absence of a potential scattering term, Eq. (2.13) 
has the form of the ordinary Boltzmann equation, 
where Jk is just the correction to the distribution 
function linear in the electric field. 

Before Eq. (2.13) can be solved, P must be known. 
In most treatments of electrical transport based on 
the Boltzmann equation, P is incorrectly taken to be 
simply the Boltzmann distribution function in the 
absence of a magnetic field, it being assumed that 
the effects of the magnetic field are properly taken 
into account by the magnetic field term 

(eli/me)(k x B). Vdk' 
Actually P itself depends on the magnetic field, 
allowing the possibility of magnetic effects not 
encountered in the usual treatment of electrical 
transport based on the Boltzmann equation. While 
P must satisfy Eq. (2.9), this requirement is not 
sufficient to determine its exact form. However, p 
can be found from the implied relationship between 
PT and PT as expressed by Eqs. (2.6) and (2.7). Let 

PT = PE + P, (2.14) 
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where PE is linear in the electric field and P is the exact 
gauge-dependent equilibrium density operator satis
fying Eq. (2.4a) at t = - 00. From statistical mechan
ics we know 

2 
P = Ke-PP 12m, (2.1Sa) 

where fJ = l/kT and 

K = .!. (21Tfj2fJ)~ 2kT sin fjwo . 
V m fjwo 2kT 

(2.1Sb) 

Placing (2.1S) in (2.6) gives the following equation 
for determining R(;, B): 

2 100 

Ke-PP 12m = _ooeiP'!;R(;, B) d;. (2.16) 

Once R(;, B) is known, p can be found directly from 
(2.7). 

In determining R(;, B) it is convenient to choose 
the Landau gauge A(r) = (-yB, 0, 0), which gives 
a magnetic field B directed in the positive z direction. 
Setting 

(2.17) 

we can factor Eq. (2.16) at once into the pair of 
operator equations 

2 2 
e-P(P~ +p. )/2m 

= i: i:ei(p~g~+P.g.)S",i~",' ~y) d~", d~y (2.18) 

and 

e-PPz'/2m = i:eiPZ~'s.(~z) d~z' (2.19) 

since Pz commutes with both P", and Py. To solve for 
Sz(~z), form the matrix of (2.19) using a plane wave 
representation. Inverting the result gives 

S.(~z) = (2:fJ)! e-mg;/2P, (2.20) 

which is identical with the expression obtained 
directly from (2.19) treating Pz as ifit were an ordinary 
continuous variable. 

Finding S",y( ~"" ~11) is somewhat more difficult 
since P", and Py do not commute. It is useful to begin 
by factoring the exponential operators appearing in 
(2.18). First consider the left-hand side of (2.18); 
this can be factored by means of the relationship7 

eP'+a' = (sec 2c)!e(p'/2cl tan 2ce-(pqlc) In cos 2ce(a'/2cl tan 2c, 

(2.21) 
which holds whenever the operators p and q commute 
with their commutator [q,p] == c. Taking p = 
i(fJ/2m)!P", and q = i(fJ/2m)!Py, we find c = WJliwo, 
which, being a constant, commutes with p and q. 
The exponential operator on the right-hand side of 
Eq. (2.18) can be factored by making use of the 

relationshipS 

eU+" = e"e"e-![u."J, (2.22) 

where again u and v are two operators which commute 
with their commutator [u, v]. Taking u = iwomy~", 
and v = i~lIpll' we find [u, v] = -iwom/i~I1JII' which 
does in fact commute with u and v as defined here. 
Rewrite (2.18), making use of (2.21) and (2.22). Now 
assume that fJ/iwo« 1, a condition that is well 
satisfied for a wide range of interesting temperatures 
and magnetic fields, and expand the results in powers 
of fJ/iwo, taking care to preserve the order of non
commuting operators. This gives 

( 
iR2/iw 

e-PPz2/2m 1 - 1-'2m ° P.,P1I 

R2/i2w2 R3fj2w2p 2 R4fj2w2 
__ 1-' __ 0 + I-' ° '" _ _ 1-' __ o(P p)2 

4 6m 8m2 a: 11 

+ _1-' __ 0 p2 e-PP.2/2m R3/i2w2 ) 

6m 11 

= 100 100 

eiPz~zeiP.~. 
-00 -00 

x [1 + ti/iwom~"'~11 + !(!ifjwom~a:~1I)2] 
x ~ S~~)(~a:' ~y)(fJfjwot d~a: d~y. (2.23) 

n=O 

Here we have let 

S"'1I(~a:' ~1I) = ~S~~)(~a:' ~1I)(fJ/iwo)n, (2.24) 
n=O 

in which the coefficients S~~)(~a:' ~1I) are assumed to be 
independent of the magnetic field. In (2.23) collect 
terms of the same order in fJ/iwo and set their respec
tive sums equal to zero. This gives the following set 
of equations for determining the functions S ~~) (~a:' ~1I): 
e-PP~' 12me-PP.'/2m 

= i: i:eiPZgZeiP.~.S~(~"" ~1I)d~a:d~II' (2.2Sa) 

ifJ2 -Ppz' /2mp p _Pp.2/2m 
-e a: lie 
2m 

= - 100 100 

eiPz~zeiP.~. 
-00 -00 

X [t im ~a:~IIS~~)(~a:, ~y) + fJS~~(~a:, ~II)] d~a: d~II' 
(2.2Sb) 

tfJ2e- PP.'/2mG - 3~ (p! + P;) 

+ ! fJ2 (P P )2Je-Ppy2/2m 
4 m2 a: II 

= 1: 1: eiP~~~eiP·~·[tm2~;~!S~(~a:, ~1I) 
- t im fJ~"'~IIS~V(~"" ~II) - fJ2S<;,}(~"" ~,,)] d~",d~II' 

(2.2Sc) 
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To solve these equations, we begin by setting 
S~~)a." ~I/) = S~O)a.,)S!O)(~II)· Then (2.25a) can be 
separated and solved giving 

S~O)(~.,) = (2:tS e-m~"/2p, (2.26a) 

S(O)(n = (~)te-ms.2/2p. (2.26b) 
II 1/ 27TfJ 

By using this result, the first term on the right-hand 
side of (2.25b) can be evaluated. It turns out to be 
identical with the left-hand term, which implies that 
S~~) = O. In this case the second term on the right
hand side of (2.25c) is also zero. Make use of the 
expression for S~o; to evaluate the first term on the 
right-hand side of (2.25c). In the resulting equation 
replace (P.,Py )2 with P;P; by neglecting a term of 
third order in the magnetic field. Then 

e-ppx2/2m (:m (p! + p!) - 1) e-pp·2/2m 

= 8 L: L: eiPx~xeiP.s·S~;) d~., d~y, (2.27) 

which has the solution 

S(2) = - ..!. (~) (1 + ~ (e + e») e-(m/2p)(sx2+~"). 
.,1/ 24 27TfJ fJ" y 

(2.28) 

Substituting our results into (2.17) and expanding 
K(fJ) to the appropriate order, we find 

R(;, B) = ~ (1 - 2~ ~ (/iwofJ)2(~; + ~!»)e-(m/2p)l;2, 
(2.29) 

which satisfies the condition [R(~, B)kk]s~o = /i31V 
derived previously.4 

Making use of (2.29), we find from (2.7) that the 
gauge-independent equilibrium density operator is 
just 

P = i C7T~2fJt 
x [1 + (/i~~)2 (~ (p! + p!) - 2) ] e-pp2/2m. 

(2.30) 

This satisfies Eq. (2.9) as it must. In a plane-wave 
representation, p has only diagonal elements, 

_ 1 (27T/i2~i[ ______ (/iW..:..:....:-ofJ)2 
Pkk' = - -- 1 + -

V m 24 

X C~2 (k! + k!) - 2) }_p/i2k
2/2mbk.k" (2.31) 

from which one can readily show that the trace of p 
is unity. 

3. CURRENT DENSITY 

As a simple example of the present theory, which 
can be treated exactly by other means, we calculate 
the current density produced by mutually perpendic
ular electric and magnetic fields chosen to lie along 
the positive x and z axes, respectively. Then Eq. 
(2.13) becomes 

o OPk (a a ) 0= eE.,- + /iwo k ll - - k.,- fk' (3.1) 
ok., ok., oky 

To solve this equation, assume that he can be written 
in the form 

/i (27T/i2fJ)! eE~fJ 2 2 2 
fk = - - -- -- Q(k"" ky, kz)ky, (3.2) 

V m wom 

where Q is an unknown function depending only on 
the square of each component of the wave vector k. 
Substituting (2.31) and (3.2) into Eq. (3.1) shows that 

Q = [1 + 2~ (/iwofJ)2 (fJ~2 (k! + k!) - 4) }_P/i2k 2/2m, 

(3.3) 
which is seen to have the form required of Q. 

The gauge-independent velocity operator is just 
plm.1 Then according to (2.5b) the current density is 
given by 

- eno 
J = -Tr {PTP} 

m 

(3.4) 

where no is the electron density, the equilibrium 
distribution contributing nothing to the current. 
Substitute (3.2) into (3.4) and carry out the indicated 
sum over k. Only the y component of the current 
density does not vanish, giving 

]y = _ enoli
2 

( 27T1i2fJ)! eE~ t 
(27T)3m m Wo m 

X ('Xl (00 (00 k![l + ...!. (wolifJ)2 
1-00 1-00 1-00 24 

a result which is good to second order in IiwofJ. 
Actually (3.5) is identical with the exact result (to 
terms linear in EO) obtained using the gauge-dependent 
density operator formalism; this is shown in the 
following section. 
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4. GAUGE-DEPENDENT DENSITY MATRIX 
FORMALISM 

It is of interest to compare our result (3.5) for the 
current density with the exact value which can be 
found using the gauge-dependent density matrix 
formalism. 9 Again following Kohn and Luttinger,5 

we take 
PE = gest, (4.1) 

where g is linear in the electric field and s is a suitably 
chosen frequency. We are then interested in g at 
t == 0, when the electric field (2.10) attains its full 
value EO. To obtain an equation for g, combine (4.1) 
with (2.14) and substitute the result into Eq. (2.4a). 
This gives 

ilisg = ..!.- [p2, g] - eE~[xa' p], 
2m 

(4.2) 

if terms of second order in the electric field are 
neglected. 

To solve Eq. (4.2), choose a representation IPv(r) in 
which HE is diagonal: HEIPv = EvIPv' Taking the 
gauge A(r) = (0, xB, 0), we have 

IPir) = (LyLz)-!unCx + xo)eik.YeikzZ. (4.3) 

Here v represents the set of quantum numbers 
(n, ky , k z) and un(x + xo) is the harmonic oscillator 
wavefunction centered at Xo = -ky /oc2

, where oc2 = 
mwo/Ii. Form the matrix of (4.2), using (4.3), and solve 
the resulting equation for gvv" We find 

Eo Pv - Pv' [ ] 
gvv' = -e '" x vv' 

Ev - Ev' 

_ _ ° Pv - Pv' ! [(n + l)t.\1 - eE", Un+l,n' 
Ev - Ev'oc 2 

(n)t ] + 2 t5 n- 1,n' - ocxot5n .n, t5kv.ku't5k •. k" (4.4) 

after inserting an explicit expression for the matrix 
[x ]vv' and again assuming s « W o . 

The gauge-dependent velocity operator is given by 
the commutator of the position coordinate r with the 
Hamiltonian HE: 

i 1 
v = - [HE' r] = - P. (4.5) 

Ii m 
To obtain the current density, multiply (4.5) by the 
electronic charge density noe and insert it along with 
(4.4) into Eq. (2.4b). The only nonvanishing contri
bution to the current density is 

_ eno { } 
Jy = -Tr pTPy 

m 

(
IiWo)t t = 4noe -2 L L L (n + 1) gnk.k •• n+1 k.k. 

m n k. k. 

(4.6) 

which is seen to be identical with our previous result 
(3.5). 

5. SUMMARY AND DISCUSSION 

The current density induced by the application of 
an electric field to electrons moving in the presence of 
a uniform magnetic field is found by means of a 
previously established gauge-independent transport 
formalism. In attempting to solve for the gauge
independent distribution function by the usual 
procedure of finding the correction to the equilibrium 
distribution linear in the electric field, it becomes 
apparent that the equation for the gauge-independent 
density operator is not sufficient to determine the 
precise form of the needed equilibrium distribution. 
An approximate expression for the gauge-independent 
equilibrium distribution is derived from its known 
relationship to the gauge-dependent equilibrium 
density operator. From this expression the correction 
to the distribution function linear in the electric field 
is found and used to calculate the current density, 
which turns out to be identical with the exact result 
obtained using the gauge-dependent transport for
malism. 

In the usual treatment of transport problems based 
on the Boltzmann equation, the equilibrium distribu
tion is taken to be the ordinary Boltzmann distribution 
function. In the absence of potential scattering, this 
is equivalent to taking 

(5.1) 

with K-l = Tr p, even when a magnetic field is 
present. While Eq. (2.9) is satisfied by (5.1), it is 
equally well satisfied by any function of p2. It is clear 
in any case that (5.1) can not be correct when a 
magnetic field is present since it depends in no way 
on the magnetic field. Furthermore, any attempt to 
solve Eq. (2.9) leads at once to the conclusion that 
the equation itself is not sufficient to determine the 
equilibrium distribution. This is true even if one takes 
(5.1) to be the principal contribution and then 
attempts to include the effects of the magnetic field 
as a perturbation. More information about p is 
required and this is supplied by the known connection 
between P and p through the function R(;, r, B, t). 
P itself is, of course, known from statistical mechanics. 
In determining p from p, we find that p has as its 
principal term just (5.1), as expected [see Eq. (2.30)], 
but contains additional terms depending on the 
magnetic field. In the particularly simple problem 
we have chosen to treat, it turns out that the contri
butions to the current density arising from the 
additional magnetic terms in the distribution function 
exactly cancel one another. Indeed, even with the 
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limited number of terms we have retained in the ex
pansion of the distribution function, the supposed 
approximate result for the current density is found 
to be identical with the exact result at least up to 
terms linear in the electric field. The inclusion of 
additional terms in the series expression for the gauge
independent distribution function would probably not 
change this result. The identity of our approximate 
expression for the current density with the exact 
result is very possibly fortuitous and related to the 
fact that the same current is also given by a calculation 
based entirely on the principles of classical particle 
mechanics. 

If we used a similar approach, it would be of interest 
to investigate further the influence of a magnetic field 
on electrical transport by considering a more realistic 
system in which potential scattering occurs, particu
larly scattering by a periodic potential. Such an 

JOURNAL OF MATHEMATICAL PHYSICS 

investigation has been undertaken but is complicated 
by the necessity of including several higher-order terms 
in the transport equation. 
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We show that automorphisms of quasilocal algebra ~{, a C*-algebra with identity on Hilbert space~, 
is extendable to the weak operator closure of III under a certain physical assumption. 

Given a topological group G and a C*-algebra \U 
with identity acting on a Hilbert space i>, let rx be a 
homomorphic mapping from G into Aut ('It), the 
group of *-automorphisms of \U, and rxg be the image 
of g E Gunder rx, i.e., rx:g -+ OCg for g E G and rxg E 

Aut (\U). Suppose that g -+ < ~, rxg(A) 'I') > is continuous 
on G for all A E \U and all ~, 'I') E i>. Let \U- be the weak
operator closure of \U; then there are two problems: 
(i) Can each rxg be extended to a *-automorphism of 
\U- and (ii) is g -+ < ~, rxg(A)1] > continuous on G 
for all A E \U- and ~, 'I') E i>? Aarens solved these 
problems when the mapping (g, A) -+ rx.(A) of 
G X \U into \U satisfies a mild joint continuity con
dition.1 Recently, Kallman2 assumed (i) and showed 
that (ii) is automatically correct if G has a complete 
metric topology. Kadison and Ringrose3 showed that 
(i) is true if 

\locg - til < 2, (1) 

where t is the identity automorphism of \U. 
However, (1) seems to be a very strong condition 

for physical problems. In this short note we will give 
another condition based on physical motivation, such 

that (i) is true for quasilocal algebra of observables 
in quantum field theory, which is the original interest 
to study the continuity of automorphisms of C*
algebras.1 

We recall some well-known local structures of 
quasilocal algebra of observables: For every bounded 
open region 0 of Minkowski space-time M, there is 
a local von Neumann algebra R(O) on a (separable) 
Hilbert space i>, such that R( 0 1) S R( O2) if 0 1 s O2 , 

Let Q be the union of all local von Neumann algebras 
R(O), i.e., Q = UiEI R(Oi)' where I is some index set 
such that UiEI 0i = M. We choose to designate, 
under the name quasi/oeal algebra of observables, the 
C*-algebra \U obtained as the norm-operator closure 
of Q, denoted by Qn, i.e., \U = Qn. 

The symmetries of a physical theory within this 
framework are represented by a *-automorphism OCg 

of \U, such that each local algebra R(O) is mapped 
isomorphically onto another local algebra R(Og), 

where Og is the image of 0 "shifted by g E G." 
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In the present article we shall study only automor
phisms of a quasilocal algebra with the above local 
structures. Before the formulation of the main result 
below, some other properties of local observables 
will be discussed. 

Given a vector state (a vector state W is a state of 
21 such that w(A) = (~, An> for A E 21 and ~, n E ~.) 
W of 21 and w(A * A) the probability of W through 
A E 21 with IIAII S; 1, then W can be determined by 
the collection of probabilities w(A * A) for all observ
abIes A. However, in an actual experiment, e.g., a 
monitoring experiment, one can obtain only a finite 
number of probabilities w(Ai Ai) for a finite set of 
observables Ai' i = 1,2,'" ,n (indeed, there are 
only a finite number of measurements, apparatus, 
and experiments). And, moreover, due to the limita
tion of accuracy in experiments, one is unable to find 
exactly weAl Ai) but Pi within a finite accuracy, viz., 

(2) 

for i = 1, 2, ... ,n, where the Ei are experimental 
errors. Expression (2) indicates that there are no 
actual experiments which enable us to specify a 
definite state w, but only a weak *-neighborhood of 
w in 21*, the dual space of 21.4 

If we want to determine an observable A E 21 with 
IIA II S; 1 in some vector states Wi' instead of fixing 
a state through observables, we have also to find the 
set of probabilities wi(A * A) for all vector states Wi' 

Similarly to the above restrictions and limitations in 
actual experiments, what can be obtained from 
experimental measurements is not exactly wi(A * A) 
but qi such that 

Iqi - wi(A*A)1 < Ei (3) 

for i = 1,2, ... ,n and some Ei (the errors in 
experiments). Expression (3) gives a weak-operator 
neighborhood of A in 21, given by the weak-operator 
topology of lB(~), the set of all bounded operators in 
~. Hence we are also unable to find an observable 
exactly, but only its weak-operator neighborhood. 

Another physical interpretation of (3) can be given 
in terms of effect and ensemble (Gesamheit) intro
duced by Ludwig5 as follows, although the notions 
of effect and ensemble contain more than observables 
and vector states: For an ideal effect A and a finite set 
of ensembles Wi' i = 1, 2, ... ,n, one can always 
find a real effect T such that qi = wi(T*T), satis
fying (3) for a given experimental error Ei • A finite 
set of ensembles Wi indicates, physically, that there 
are only a finite number of apparatus and experiments. 
"One can always find a real effect T" means that one 
can always construct an instrument in experiment 

to measure a real effect. Therefore, (3) is in fact the 
notion of physical approximation of ideal effects 
given in Ref. 5. 

Suppose that A E R(O) with IIAII S; 1. Since all 
experiments (including the locations of instruments 
and measurements) are operated in the finite region 0, 
then the experimental results (real effects) are ob
tained from O. Mathematically, this means that there 
are real effects T in R( 0) with II Til S; 1 such that (3) 
is satisfied. Therefore, there is an open weak-operator 
neighborhood of A belonging to RI(O), the unit ball 
of R(O), i.e., A is an interior point of RI(O). Let 

RI(O) be the interior of RI(O) with respect to the 
weak-operator topology of lB(~); then the conclusion 

o 
of the above discussion is A E RI(O). 

An observable A E QI' the unit ball of Q, has 1-
o 

property ("I" for interior) if A E R1(0) for some 
finite region 0 c M. Furthermore, a subset W of 
QI has I-property if, for each A E W, there is some 

o 
finite region 0 c M such that A E RI (0). Conse-
quently, if Whas I-property, then 

W £ U RI(Oi) 
iel 

for some index set 1. 
The purpose of this article is to show the following. 

Theorem: Let OCg be an automorphism of quasilocal 
algebra 21 as defined above. Suppose each weakly 
closed subset of Ql, the unit ball of Q, has I-property; 
then OCg is extendable to 21-. 

Before we prove the main theorem, we need two 
lemmas. 

Lemma 1: Let ocg be an automorphism of quasilocal 
algebra 21. Then OCg is ultraweakly continuous on 21, 
if OCg is ultraweakly continuous on Q. 

Proof: Let ifJ be a normal state with II ell II = 1 on 21-, 
and € > O. Since (211 = 21, then for each A E 21 there 
exists T E Q such that IIA - Til S; E/3. Moreover, by 
the assumption, lifJ[ocuCT)] - ifJ[ocg.(T)]1 S; E/3 for TE Q 
and go E G. Hence 

lifJ[ocuCA)] - ifJ[ocu.(A)]1 

S; lifJ[lXuCA - T)]I + lifJ[ocuCT)] - ifJ[ocg.(T)]1 

+ lifJ[ocg.(T - A)]I 

S; 2 IIA - Til + E/3 S; E. 

Therefore, IXg is ultraweakly continuous on 21. 

Lemma 2: Let Q = Uiel R(Oi) for i E I, where 
UiEIO; = M. If OCg is an automorphism of quasilocal 
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algebra ~ such that 

ocg:R(O) -- ocg(R(O» = R(Og) 

is a isomorphic mapping, then ocg is ultraweakly 
continuous on Q if each weakly closed subset of QI' 
the unit ball of Q, has I-property. 

Proof: Let W be a weakly closed subset of QI' 
By assumption, W has I-property; hence W s;; 

o 
UiEl RI(O,) for some index set 1. Furthermore, W is 
compact in the weak-operator topology; thus W s;; 

o 
U'El RI(O;) for some finite index subset J c: 1. Hence 

W s;; U RI(O,) 
ieJ 

for finite subset J of I. 

For each A E W by assumption there is some 0i 
such that RI(O,) is a weak-operator neighborhood of 
A and, since W is weakly closed, the intersection 
of Wand RI(Oi) is nonempty, i.e., W /I R1(O,) = 
V, ¢ 0. Also, V, is weakly closed, because R1(Oi) is 
also weakly closed. Clearly, V, is a weakly closed 
subset of RI(Oi)' and W /I UieJ RI(Oi) = UieJ Vi 
for finite index set J. In fact, we have 

for finite index set J. 
Moreover, OCg is a isomorphic mapping of R( a q-l) 

onto R(O), where Og_l is the inverse image of 0 
under g E G; then OCg is ultraweakly bicontinuous,6 or 
weakly continuous on the unit ball. Hence, for Vi s:; 
RI(Oi)' OC;l(Vi) is weakly closed, and for finite index 
set J 

lX;l(W) = U OC;I(~) 
ieJ 

is therefore weakly closed, which implies ocg is weakly 
continuous on QI and thus ultraweakly continuous 
on Q. 

The proof of the theorem is trivial now. From 
Lemma 3 of Ref. 3 we know that OCg is extendable to ~
if OCg is ultraweakly bicontinuous on ~. Since (OCg)-1 = 
OCg_l, we need only to show that !1.g is ultraweakly 
continuous on ~, which follows directly from Lemmas 
1 and 2. 

A final remark is given here to show that for 
G = Rn, if automorphism oc'" of a quasilocal algebra 
~ satisfies (1), then the observable has I-property. 

Since oc'" satisfies (l), IX", is in a norm-continuous 
I-parameter subgroup of Aut (~).3 Let t -- IXt'" be 
the norm-continuous I-parameter group. If A E QI' 
then A E RI(Oo) for some 0 0 c: M. Let 0 be a finite 
region of M such that 0 0 S 0; then R(Oo) s:; R(O) 
and A E RI(O). For each x E Rn and all sufficiently 
small t, 0 0 can be shifted by tx such that 0 0 + tx S;; 0; 
then oct",[R(Oo») S;; R(O). Hence, for each BE R(O)" 

[B, oct",(A)] = 0 (4) 

for small t. Furthermore, due to the norm-continuity 
of t -- OCt"" there is a derivation d of ~ such that 
OCtlJ) = exp (t<5). Applying the same method given by 
Kadison,7 we obtain 

[B, oct.,(A)] = [B, A] + t[B, d(A)] 

+ lt2[B, d2(A)] + ... = 0 

for small t, so that [B, dn(A)] = 0 for n = 0, 1, .... 
Thus (4) is true for all t and each x ERn, which implies 
that oct",(A) E R( 0) for all t and each x E Rn, or more 
precisely, oct",(A) E RI(O) for all t and each x ERn. 
Moreover, since Iloc t", - til < 2, we have 

I (~i' [!1. t.,(A) - A]1'li>1 < 2 

for ~i' 'YJi E ~ with I\~il\ < 1, \\'l'};\1 ~ 1. Therefore, 
there is a weak-operator neighborhood U(A; ~i' 'YJi) 
of A given by 

U(A; ~i> 'Yli) = {oct.,(A); \(~i' [oct",(A) - A]'YJi)\ < 2 

for all t and x E Rn, ~i' 'YJi E ~ with 

lI~i\1 ~ I, II 17ill ~ I} 

which is contained in RI (0). Thus A is an interior point 
o 

of RI(O) , or A E RI(O) for some 0 c: M. 
Conversely, it is clear to see that I-property does 

not imply (1). 
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Expressions for the matrix elements of powers of infinitesimal operators of R. are obtained in a basis 
reduced a~cording t.o R5 ::J (SU2• x SU2). Operato:s producing th~ basis functions of any weight from 
those of highest weight are considered. The couplmg and recouplmg procedures for the semistretched 
and. the other multiplicity-fre~ cases are ~onsidered. By use of projection operators the expressions for 
the Isoscalar factors of both kmds of semlstretched Clebsch-Gordan coefficients of R., as well as a new 
formula for the 9j-coefficient of SUo involving only three summation parameters, are obtained. Methods 
of obtaining the normalized isoscalar factor coupling the basis functions of two symmetrized representa
tions of Rs are discussed. 

I. INTRODUCTION 

Several papers1- S devoted to the problems of the 
theory of representations of the group Rs, of interest 
to physicists, appeared in the 1960's. In Ref. 1 the 
group Rs is considered together with the other Lie 
groups of the second rank. In Ref. 2 some expressions 
for isoscalar factors (i.f.'s) of the Clebsch-Gordan 
coefficients (CGC's), in the basis reduced with respect 
to SU2 X SU2 , are obtained. In Ref. 3 the polynomial 
basis for the irreducible representations is derived. 
In Refs. 3 and 4 the expressions for matrix elements of 
infinitesimal operators O.o.'s) are considered. In Ref. 
4 the invariants and a family of identities relating 
various polynomials of degree four in the i.o.'s are 
found. In Ref. 5 the bases reduced with respect to 
Ra are treated. 

In Ref. 6 the properties of the basis functions as 
well as of the i.f.'s under the elements of the substitu
tion group7 (of parameters labeling the representa
tions) are established; and expressions, in terms of 
SU2 quantities, have been found for the stretched 
and semistretched i.f.'s of the first kind [Eqs. (20) and 
(29), respectively). The corresponding expression for 
the semi stretched i.f.'s of the second kind has not been 
given there, because it involves nine summation 
parameters and therefore is not of practical impor
tance. The main goal of this paper is to work out more 
powerful techniques of dealing with the basis func
tions and i.f.'s, enabling us to obtain expressions for 
the i.f.'s involving a greatly reduced number of sum
mation parameters. 

In the next section we obtain the expressions for the 
matrix elements of powers of i.o.'s using methods 
analogous to those used in the theory of SU3 .8.9 In 
Sec. III we construct the general weight lowering 
operator expressed in terms of products of powers of 
the infinitesimal operators. This appears to be more 
useful than that expressed in terms of powers of 

"step-up" and "step-down" operators of Ref. 2, 
because in our case the results of Sec. II may be 
applied with great success. 

In Sec. IV the standard semistretched coupling 
schemes are defined together with those nonstandard 
ones which can be obtained from the standard ones 
with the help of the elements of the substitution group 
mentioned above. In Sec. V, by use of the weight 
lowering operators of Sec. III and of the properties of 
the quantities of representations of SU2 ,10 the expres
sion for the semi stretched i.f.'s of the second kind is 
deduced, which involves only three summation param
eters instead of nine as obtained by the methods 
used in Ref. 6. A quantity having higher symmetry 
than the i.f.'s itself is singled out from this expression. 

Section VI is devoted to the consideration of the 
multiplicity-free coupling of two symmetrized vectors 
as well as of a symmetrized vector and symmetrized 
spinor, the main attention being paid to the normaliza
tion problem. In solving this last problem, the above
mentioned symmetrical quantity was applied in 
carrying out the summation involved in the special 
case of the recoupling coefficient needed in the tech
niques used. In Sec. VII, we examine the semistretched 
recoupling matrices which are expressible in terms of 
recoupling matrices of SU2 • 

In the Appendix a new expression is deduced for the 
9j coefficient of SU2 containing only three summation 
parameters. The techniques of the theory of repre
sentations of Rs are used for this purpose. This possi
bility emerges from the fact that quantities of Rs are 
expressed in terms of SU2 as is done to fuII extent in 
Ref. 6 as well as in this paper. 

II. INFINITESIMAL OPERATORS AND THE 
MATRIX ELEMENTS OF THEm POWERS 

We take the infinitesimal operators, as is done by 
Hecht,2 and express them in terms of those of SU, 

594 
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with slight differences in normalization. So we write states III) and IJJ) with the help of the operators 

Operators (la) and (1 b) are the infinitesimal operators 
of subgroups SU2 , and those of (Ic) constitute the 
bispinor of R4 , which transforms like a spinor with 
respect to each SU2 • 

The matrix elements of (la) and (Ib) are obtained 
from the theory of representations of SU2 , and those of 
(Ic) are expressed in terms of CGC's of the subgroups 
SU2 and reduced matrix elements obtained from 
formulas (16) of Ref. 2, omitting the factor i and the 
expression Jm(Jm + 2) + Am(Am + 1) in the denomi
nator, because of the difference in the normalization 
and the definition of reduced matrix elements. 

Under the term of the power of i.o.'s we understand 
the coupling of a certain number of equal operators 
into the tensor of highest rank and the highest (or 
lowest) projection of this rank. The matrix elements 
of powers of (l a) and (l b) are known from the theory 
of SU2 • 

The general reduced matrix element is obtained by 
calculating this matrix element 

/ (KA) I T2~ I (KA) \ 
\1', M + ex J + ex, J + ex ++ IMJJ/' (2) 

We obtain the SU2 states 11M) and IJN) from the 

1 

( 
(l+M)! )~FI-M 

(21)! (I - M)! -0' 

1 

( 
(J + N)! )~FJ-N. 

(2J)! (J _ N)! 0-

(3a) 

(3b) 

F:'o·u in (3a) indicates that the operator F_o is to be 
applied I - M times, successively, to the state III). 
The same holds for (3b). 

We make use of the transposition formula 

T a Fb _" a! b! (-1)" 
++ -0 - £., 

u.vu! (v - u)! (a - u - v)! (b - v)! 

Fb-vTv-uTa-u-vFu (4) 
X -0 -+ ++ 0+' 

obtained by using the two first equations of the for
mulas (2.11) of Ref. 8. Further, we use particular 
cases of (2) with M = I (so that I' = I + ex) and 
M + rJ. = -I' (so that I' = I - rJ.). Under these con
ditions the summation in the corresponding expres
sions disappears. 

The result for the reduced matrix element of (2) 
(after omitting the Clebsch-Gordan coefficients of 
SU2) is the following expression: 

/ (KA) II T 2a II (KA)\ 
\I'J + rJ. IJ / 

1 

= (2ex)! (21 + 1)(2J + l)!)~' P(KAI'J') . (5) 
(2J' + 1)! P(KAIJ)V(rJ.IJ') 

Here J' = J + ex, and '\7(abc) is defined by Eq. (16) 
of Ref. 6. The new quantity P is defined as follows: 

P(KAIJ) = (K + A + I + J + 2)! (K + A - 1+ J + 1)! (K - A + 1+ J + 1)! 
(K + A + I - J + 1)! (K + A - I - J)! 

(K - A - I + J)! (I + J + A - K) !)i 
X (K _ A + I _ J)! . (6) 

Further, we obtain a formula similar to (4) with FO- instead of F_o and make use of the reduced matrix 
element stretched with respect to the subgroup SU2 • This enables us to obtain the general expression for the 
reduced matrix element. It has the form 

/(KA)// T2~ //(KA)\ = [(21 + 1)(2J + l)]i(J + J' - ex)! V(exIJ')V(exJJ') 
\ 1'1' IJ / P(KAI'J')P(KAIJ) 

( _l)J-I'+a+i-i(2i + 1)P2(KAij) 

X h (2j + 1)! (rJ. + J + J' - 2j)! \7 2(j - J', i, 1')\72(j _ J, i, I)' (7) 

Unfortunately, the expression (7) is not symmetric with respect to the parameters I and J (as well as I' 
and J'). It simplifies considerably for the symmetric representations (AA) or (KO). 
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It is to be taken into account that the contragredient 
operators are - T++ and T __ , a property which has 
been used in comparing the matrix elements of powers 
of i.o.'s. Moreover, the powers of i.o.'s generally are 
irreducible tensor operators of SU2 but not of Rs 
itself, as was the case in considering the group SU3 

(cf. Ref. 9). 

III. THE GENERAL WEIGHT LOWERING 
OPERATOR 

The formulas (8) of Ref. 2 allow us to change the 
weight by one step. However, it is very useful to have 
operators allowing us to deduce the state of any 
weight from the state of highest weight by one single 
operation instead of repeated application of some 
operator many times. The reason is that the separate 
parts of "step-up" and "step-down" operators do not 
commute, and repeated application gives very awk
ward expressions. 

For SUa such an operator is constructed in the 
form of a polynomial in i.o.'s. For Rs it is more 
difficult to do in this way, because the coefficients in 
the polynomial are very complicated. 

It is easy to find states satisfying the condition 
[ + J = K + A, by acting on the state of highest 
weight with the operator T:"-r, the result being a 

state of nondegenerate weight. Consequently, 

I 
(KA) \ 

K - a, K - a, A + a, A + a/ 

= (2K - 2A - 2a)!)iT2 <x I (KA) \ (8) 
(2a)! (2K - 2A)! -+ KKAA/ 

since, in this special case, T_+ acts on the state as 
i.o.'s of SU2 • 

The next step is to construct the states with arbi
trary I and J. First, we observe that the following 
expansion holds: 

I
<KA)\ = ~ Q[(KA)IJ afJ1FK-a.-P-IFMa.-P-JT2P 
IIJJ / f:p ,-0 0- --

X 1 (KA) \. (9) 
K - a, K - a, A + a, A + a/ 

In order to find the coefficients Q in (9), we operate 
with the step-up operators F+o or Fo+ on both sides of 
this last equation. The result on the left-hand side 
must be zero. By the use of commutators of F+o and 
Fo+ with the operators of the right-hand side of (9), we 
obtain recurrence formulas for Q, which together 
with the boundary conditions (the degree of the 
polynomial in Lo.'s cannot be negative) show that the 
coefficients Q must be proportional to the expression 

[(2fJ)!]-1[(K + I - a - fJ + 1)! (K - I - a - fJ)! (A + J + a - fJ + 1)! (A - J + a - fJ)Wi 

X [K _ a ~ fJ + 1 -A - a
J 
+ fJ _ 1 K ~ ~ ~ 2a} (10) 

Here, the quantity in the square bracket is a nonstandard CGC of SU2 , because the absolute values of 
two of the projections exceed the values of the corresponding angular momenta. For this CGC we use the 
expression of Van der Waerden [the first of Eqs. (13.1) of Ref. 10] and normalize (10). For this purpose, 
we multiply (9) by the state contragredient to the state of the left-hand side, the result being equal to unity, 
and carry out the calculation of matrix elements of the right-hand side. Then by the use of (3) we obtain 

I 
(KA) \ = B[(KA)IJ]V(K - A I J) (I + J - K + A)! 
IMJN/ " (I + J + K - A + 1)! 

X (21 + 1)(2] + 1)(1 + M)! (J + N)! (2K - 2A)!)i 
(I - M)!(J - N)! 

x I [(2a) I (2K - 2A - 2a) !]i( _1)2P 

a,p.u (2fJ)! (K - I - a - fJ)! (A - J + a - fJ)! u! (2a - u)! 

(K - I - IX - fJ + u)! 
x--------------------~--------~--~--------------------

(K - A + I - J - u)! (K - A - 1+ J - 2a + u)! (A + J - a - fJ + u + 1)! 

X F!!o-M-a.-PFt:N+«-PT~L I . (KA) \, (11) 
K - IX, K - IX, A + IX, A + a/ 

B[(KA)IJ] being defined by Eq. (15) of Ref. 6. 
The expression (11) can be obtained in another form by using other expressions for the nonstandard 

CGC of SU2 in (9). One of those forms, useful in practice, is obtained by using the Fock-Racah expres
sion [the second of Eqs. (13.1) of Ref. 10] instead of that used above. The connection between this new 
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formula and (11) can be expressed by this summation 
relation 

(A + u)! 

~ u! (B - u)! (C - u)! (D + u)! (5 + u + 1)! 

1 = --------------------------
B! (B + D)! (5 - A)! (5 + C + I)! 

",,(A + u)! (B + D + u)! (5 + C - A - u)! 
x~ . 

u u!(C-u)!(D+u)! 
(12) 

This formula will be of use in carrying out the summa
tions appearing in the process of deriving the expres
sions for isoscalar factors of CGC of R5 to be dealt 
with in what follows. 

IV. ON THE SEMISTRETCHED COUPLING 
SCHEMES 

We consider multiplicity-free terms in the direct 
products of two irreducible representations of partic
ular coupling schemes, called semi stretched of the 
first and second kinds, as defined by Eqs. (27) and 
(28) of Ref. 6, respectively. The corresponding iso
scalar factors we call standard semi stretched of the 
first kind (s.s.i.f.'s I) and of the second kind 
(s.s.i.f.'s II), respectively. For the fully stretched cou
pling scheme the conditions (27) and (28) of Ref. 6 
are satisfied simultaneously. 

We suppose that the symmetry conditions (A.22) 
of Ref. 2 when applied to the s.s.i.f.'s give the s.s.i.f.'s 
as well. They remain s.s.i.f.'s after transposing the 

factors in the direct product according to this relation 

[
(K1A1) (K2A2) (KA)] 

I 1J 1 12J 2 IJ 
= (_1)K-A-Kl+Al-K2+A2+h+12-I+Jt+Jo-J 

x [(K2A 2) (K1A 1) (KA)] (13) 
12J 2 I 1JJ IJ 

as well as 

[
(KI A1) (K2A2) (KA)] 

I 1J 1 12J 2 IJ 

= (_1)2Al+2A2+2A[(K1Al) (K2A 2) (KA)]. (14) 
JIll J212 JI 

On the other hand, using the relations (21) of Ref. 
6, with respect to the elements of the substitution 
group, we can obtain nonstandard semistretched 
i.f.'s (n.s.s.iJ.'s) of both kinds. The parameters of the 
n.s.s.iJ.'s I satisfy the condition 

K1 - Al + K2 + A2 = K - A (15) 

and those of the n.s.s.i.f.'s II, 

Al + K2 = A. (16) 

It is easy to prove that under four of the eight 
elements of the substitution group, generated by the 
elements (3) of Ref. 6, the s.s.i.f.'s I transform into 
n.s.s.i.f.'s I and s.s.i.f.'s II into n.s.s.i.f.'s II. Among 
these four elements only two are common. The other 
four elements do not change the character of s.s.i.f.'s. 

States of any number of representations can be 
coupled by the semi stretched coupling scheme. For ex
ample, in the case of three representations the states of 
the resulting representation are expressed in this way 

I
<K1A1 , K2A2' K3A3' K12A 12 ; KA)\ = ! [ (K1A1) (K2A 2) (K3A3) (KA) ] 

IMJN / liM. I1M1J1N1 12M2J 2N 2 IaMaJaNa IMJN <K12A12> 

Here 

JiN. 

(K2A 2) (K3Aa) (KA) ] 

12M2J2N2 13M3J3Na IMJN <KUA'2> 

_ ! [ (K1A 1) (K2A 2) 

h 2M,. I 1M 1J 1N 1 12M 2J 2N 2 
J12 N 12 

is a generalized CGC of R5 in analogy to the case of 
S U 2' as given by Eq. (21. 7) of Ref. 10. In this partic
ular case, the parameters labeling the repeated repre
sentation are not needed. The parameters labeling 
representations must satisfy the conditions 

a 2 

! (Ki + Ai) = K + A, ! (Ki + Ai) = Ku + A12 
i=l i=1 (19) 

for the semistretched coupling scheme of the first kind, 
and 

3 

! K; = K, Kl + K2 = K12 
i=1 

for that of the second kind. 

(20) 

Equations (19) and (20) represent the generalization 
of (27) and (28) of Ref. 6. They may be easily general
ized to the case of any number of representations 
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whose states are to be coupled by the semi stretched 
coupling schemes. 

The expression for the s.s.iJ.'s I is given by Eq. (29) 
of Ref. 6. It is worth mentioning that this formula, as 
well as (20) of Ref. 6, giving the expression for the 
stretched i.f., can be deduced more easily than in Ref. 
6 by taking fixed values of some arbitrary parameters 
in (19) and the analogous formulas. For example, 
taking i1 = ia = 0 in (19) of Ref. 6, we see that all 

other parameters, including summation parameters, 
are uniquely defined, and the question of using the 
summation formulas no longer arises. 

V. THE SEMISTRETCHED ISOSCALAR 
FACTORS OF THE SECOND KIND 

In this section we obtain the expressions for 
s.s.i.f.'s II. At first we obtain the formula 

(A2A 2) (AI + A 2 , A)] 
1212 I'J' 

= (_1/A1+2lt 2V(I'I1ISV(J'I l I2) (4AI + 1)! (4A2 + 1)! (2A + 1)! 

V(AAIA2) (2A})! (2A2)! (2A} + 2A2 - 2A)! 

(2I} + 1)(212 + 1)(21' - 2A)! (2A} + 2A2 - 21')! )! 
X . 

(2A} - 211)! (2A1 + 211 + 2)! (2A2 - 212)1 (2A2 + 212 + 2)! (21' + 1)! (2J' + 1)! 
(21) 

Here 

I' + J' = Al + A2 + A; 

Eq. (21) is deduced by acting on the state of highest weight of the representation (AI + A2 , A) with the operator 
(8) and taking the product with the functions 

I 
(AlAI) \ I (A2A2 ) \ 

111111 , J' - 12/' 12 , l' - 11' 1212/' 

Trivial rearrangements give (21). 
The next formula to be derived is 

(K2A 2) (KI + K 2, A)] 
12J 2 I'J' 

= (_l)Kl+Al-Il-Jt [(211 + 1)(2J1 + 1)(212 + 1)(2J2 + 1)]1 

B[(KIAl)11Jl]B[(K2A2)laJ2] 

V(I'I lI2)V(J'J1J 2) 
X ----------~~~~~~----------

V(KI - AI' II, J1)V(K2 - A 2, 12 , J 2)V(AA1A2) 

( 
(2A + 1)! (2KI + 2K2 - 21')! (21' - 2A)! )! 

X (2Al)! (2A2)! (2K1 + 2K2 _ 2A)! (21' + I)! (2J' + I)! ' I' + J' = Kl + K2 + A. (22) 

For its derivation we use (21) and a formula analogous to (19) of Ref. 6. 
By the use of (9) for the s.s.i.f.'s II of the general form, we find the expression 

[
(KIA!) (K2A2) 

I}J1 I 2J 2 

h J'J 
j2 J' 

(23) 



                                                                                                                                    

OPERATORS AND FACTORS FOR THE GROUP Rs 599 

The summation is carried out with respect to IX, f3, iI' i2, jl' j2' 1', and J' satisfying the conditions 
l' + J' = K1 + K2 + A, IX = J' - A, and f3 = il +';2 - II - J2. These together with one summation 
parameter involved in Q, according to formula (23), give six linearly independent summation parameters. 

After substituting the expressions for cac's of SU2 and those for submatrix elements into (23), we obtain 
a rather bulky expression. In order to eliminate the factors 2jl + 1 and 2i2 + 1, which are awkward in the 
summation process, we use the relation 

! ~-1)i12(2i12 ~ ~)~i~2 +2~1.2~! = (. (.i1 - i.2 + ~12)!y - i3 + ~12)!. )! 
i12 (112 - m12)! V (/2'1/12)\7 (131112) (21 + 1)(2/2)! (2/3)! (11 + 12 - m12)! (I + 13 - m12)! 

(_1Y-ia [i2 + i3 i1 
m12i_ iJ 

(24) 
X V(i2 + i3, iI' i) i2 - i3 m12 - i2 

following from the equality 

! [ i1 . i2 i12 ] [ i12 i3 
i . ]<i1i2(i12)i3i I i3i2(i2 + i3)i1i) 

i12 m12 - 12 i2 m12 m12 -ia m12 - 13 

= [~3i3 i2 ~2 + ~a] [~2 + ~3 i1 
m

12 
i_ iJ. (25) i2 12 - 13 12 - 13 m12 - i2 

For the expressions of the cac's of SU2 in (24), we select ones such that some of the summation formulas 
of Eq. (14.2)-(14.5) of Ref. 10 are applicable to the resulting expression. The result is 

[
(K1A 1) (K2A2) (K1 + K 2, A)] 

I 1J1 12J 2 IJ 

= (211 + 1)(2J1 + 1)(212 + 1)(212 + 1)(2A)!)! 

(2A1)! (2A2)! 

X ! (_1)KI-Al+K2-A2-Jt-J2-I + 1t+V [ Al A2 A] 
u,V u - Al V - A2 U + v - Al - A2 

X (2A1 - u)! (2A2 - v)! (A - Al - A2 + u + V)!)! 

u! v! (AI + A2 + A - u - v)! 

(K2 - A2 + 12 - J 2 + v)! 
X . (26) 

(I2 + J 2 - K2 + A2 - v)! (K2 - A2 + II - J2 - I + v)! (K2 - A2 + II - J2 + I + v + 1)! 

Here one summation parameter is involved in the cac of SU2 • Using the appropriate expression for this 
cac, we can bring the sum to the form 

(2A + l)! ( _1t1+A2-Mh+I2-l+a+fJ+Z 

I ... = ! ----'------"---------
u,v V(AA1A2) a,p,z z! (AI + A2 - A - z)! IX! (J1 + J2 - J - IX)! 

(II + 12 + J1 + J 2 - K1 - K2 + A - IX - f3)! 
X . 

f3 ! (II + 12 - I - f3)! (II + 12 + I - (3 + I)! 
(27) 

Now let us consider the particular case of (26) and (27) when A = A1 + A2. Then the summation with 
respect to z falls off. Moreover, we then obtain an expression for the stretched i.f. which, according to 
formula (20) of Ref. 6, is proportional to the stretched 9j coefficient of SU2 • This gives us a new expression for 
the stretched 9j coefficient involving two summation parameters, as in Eq. (25.20) of Ref. 10. However, the 
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expressions are quite different, and the transformation of one into the other is rather tedious. Using the new 
expression for the 9j coefficient, we conceal the summation with respect to IX and fJ in (27) in the corresponding 
stretched 9j coefficient. Afterwards, we use Eq. (25.20) of Ref. IO for this 9j coefficient and obtain the 
expression 

[
(K1A1) (K2A2) (KI + K 2, A)] 

IlJl 12J2 IJ 

= (_1)Al+A2-A[(2Il + 1)(2Jl + 1)(212 + 1)(2J2 + 1)(2A + 1)]! 

X (2Kl - 2Al) 1 (2Kl + 1)1 (2K1 + 2Al + 2)1 (2K2 - 2A2)! (2K2 + I)! (2K2 + 2A2 + 2)!)! 

(2KI + 2K2 - 2A)! (2Kl + 2K2 + 1)! (2KI + 2K2 + 2A + 2)! 

Here 

[ 

Kl 

x K2 

Kl + K2 

[ 

K1 Al II J1] 
K2 A2 12 J2 

Kl + K2 A I J 

B[(KI + K 2, A)IJ] 

B[(KlAl)IlJl]B[(K2A2)I2J2J 

(28) 

V(KI + K2 - A, I, J)(/ + J - Kl - K2 + A)! 
x------~~~~--~~~------~--~~~------

V(KI - AI' II, Jl)V(K2 - A2 , 12, J2)V(IIlI2)V(JJIJ2)V(AAlA2) 

( 
(2Kl + 2K2 - 2A)! (2A)! (2Kl + 2K2 + 1)! (2Kl + 2K2 + 2A + 2)! )! 

x (2KI _ 2Al)! (2A])! (2Kl + 1)! (2Kl + 2Al + 2)! (2K2 - 2A2)! (2A2)! (2K2 + 1)! (2K2 + 2A2 + 2)! 

x L (-1)",+11+'(211 - x)! (/ - II + 12 + x)! (2Jl - y)! 

M •• X!(/l + 12 - I - X)!y!(J1 + J2 - J - Y)!Z!(AI +A2 -A - z)! 

(J - Jl + J2 + y)! (2Al - z)! (A - Al + A2 + z)! 
x . ~~ 

(/1 + J1 - KI + Al - X - Y - z)! (/ + J + A - Al - 11 - J1 - K2 + X + y + z)! 

This quantity, which we callIIj coefficient and which 
does not belong to the class of 3nj coefficients, is more 
symmetric than the i.f. itself. Permutation of the last 
three columns does not change its value nor the phase. 
Transposition of the first two rows gives the phase 
factor 

( -1 )Al+Aa-A+ll+l2-l+h+J 2-J • (30a) 

Application of the elements of the substitution 
group allows us to deduce other forms of the expres
sions for the s.s.i.f.'s as well as for the n.s.s.i.f.'s. For 
example, using Eqs. (2Ib) and (2Ic) of Ref. 6 and 
applying (A.22) of Ref. 2, we obtain expressions for 
the s.s.i.f.'s which are less symmetric than (28), but are 
very useful for practical purposes. By comparing the 
two expressions for the same i.f., we deduce this prop-

erty of the llj coefficient: 

[

-Kl - K2 - 2 13 J a A3] 
= (_I)12+J2+A2-K2 K2 12 J2 A2 . 

-K2 - 2 11 J1 Al 
(30b) 

By the way, it is worth mentioning that mirror 
reflection substitutions (X ----+ -X - I, X = Ii' Ji , Ai' 
i = 1,2, 3) change only the phase factor of the llj 
coefficient. 
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VI. ISOSCALAR FACTOR COUPLING TWO 
SYMMETRIC REPRESENTATIONS 

For this section there is left to consider the coupling 
procedure of two symmetrized vectors as well as that 
of the symmetrized vector with the symmetrized 
spinor, the case of two symmetrized spinors having 
been considered in Eq. (26) of Ref. 6. The direct 
products under consideration are multiplicity free, as 
is quite easy to prove by graphical methods similar to 
those used by Speiserll for SUa or by the algebraic 
methods of Bucella and Cattani.12 

In the case of the direct product of two symmetrized 
vectors (AlAI) and (A2A2), reduced to the representa
tions (KA), the parameters satisfy the conditions 

K - A ~ 0, Al + As - K ~ 0, 

Al - As + A ~ 0, A2 - Al + A ~ 0, (31) 

constituting the triangular region. In the case of the 
product of a symmetrized vector (,A.,A.) with a sym-

[
(AlAI) (A2A2) (KA)] 

1111 12Is I'J' 
= N(A1A2' KA)( _1)Al-A2+A+h-I2+I 

metrized spinor (kO) when reduced to (KA), we have 

2). - 2A ~ 0, 2K - 2,A. ~ 0, 

K + A - k ~ 0, k - K + A ~ 0, (32) 

the parameters constituting a quadrangular region 
which in particular cases degenerates into a triangular 
one. The linear combinations of parameters in (31) 
and (32) must be integers. 

The expressions for i.f.'s under consideration can be 
found by the methods of this paper or by those of 
Ref. 6. However, the more difficult task is the normal
ization problem. We consider in detail particular 
cases of i.f.'s for demonstrating the derivation of ex
pressions and normalization procedures. The general 
cases can be derived from the special ones by the 
methods of Sec. 5, in a way similar to that used for 
Eq. (28), the corresponding expressions being too 
bulky to be given here. 

We consider the special case of coupling two sym
metrized vectors in which l' + J' = K + A. Then we 
obtain 

x [(211 + 1)(2/2 + 1)(2Al - 2I1)! (2A1 + 211 + 2)! (2A2 - 2Iz)! (2A2 + 212 + 2)!]t 

x V(I'I I )V(J'I I )(2K - 21')1 (21' - 2A)!)t 
12 12 (21' + 1)!(2J' + 1)! 

Here 

x I (-1)"+"+Z(/1 + Is + I' - 2A + u + v - z)! 

U,v,Z u!(2A1 ..,... 211 - u)! (211 + u + 1)! (2AI - u + 1)! v! (2A2 - 212 - v)! 

(2Al + 2A2 - II - 12 - I' - u - v + z)! x . (33) 
(212 + v + 1)! (2A2 - v + 1)! z! (K - A - z)! (21' - 2A - z)! (K + A - 21' + z)1 

N(AIA2' KA) = No(AlA2' KA)(2Al + 1)1 (2A2 + 1)! (K - A)! 

x (2K - 2A + 1)(K + A - 2Al + 1)(K + A - 2A1 + 2A2 + 3)(2AI + 2A2 - 2K)!)t. 

2(2Al + 2A2 - K - A + 1)(4Al + 1)! (4A2 + 3)! (2Al + 2A2 - 2A + 1)! 

The expression (33) is deduced with the help of recur
rence relations in a way similar to that used in Ref. 6. 
This means that the basis of the representation (AlAI) 
is to be constructed from two bases. These last ones 
are taken to be (AI' Al - k) and (kO). Afterwards, 
the resultant representation is to be constructed by the 
coupling scheme 

(34) 

Here k satisfies the condition 2k = 2AI + 2A2 -
K - A. Hence, all couplings are stretched or semi
stretched. 

The normalization factor No(AlA2' KA) is the 
quantity reciprocal to the element of the recoupling 
matrix of Rs given below in (38). In order to find it, 
we rearrange the sum on the right-hand side of (33). 
At first we reveal the fact that the llj coefficient 
appears as defined by Eq. (29): 

[

-HK + A + 3) -II - 1 -12 - 1 I' - !(K + A + 1)] 
-i(K + A + 3) -11 - 1 -12 - 1 I' - !(K + A + 1) . 

-K - A - 3 -2Al - 2 -2A2 - 2 -K + A-I 

(35) 
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In (29) we apply the substitutions 
K,A, I, J -+ -K - 2, -A - 1, I, -J - 1, 

K 1, AI' II, J1 -+ -K1 - 2, -At - 1, II' -J1 - 1, (36) 

and obtain a new expression for the Ilj coefficient. Then, we express the Ilj coefficient (35) with the help of this 
new formula. Comparing this new expression with the old one, we replace the sum in (33) by 

(_1)2A-2I'(2A1 + 2A2 - 2A + I)! (II + 12 - I')! 

(2A1 + 1)!(2A2 + I)! (K - A)! (2K - 2I')!(2A1 + 211 + 2)!(2Az + 212 + 2)! 

X L (-I)"'+V+Z(4A1 + 2 - x)! (4A2 + 2 - y)! (2K - 2A - z)! 

M.' x! (2A1 - 211 - x)! (2A1 - x + I)! y! (2A2 - 212 - y)! (2A2 - y + I)! 

(2A1 + 2A2 - 2A - 11 - 12 + I' - x - y - z)! 
X . (37) 

z! (K - A - z)! (21' - 2A - z)! (2Al + 2A2 - 2A - x - y - z + I)! 

For finding the recoupling matrix mentioned above, we use the relation 

«AI' A] - k) (kO)«A1A 1»(A2A 2) (KA) I (AI' A] - k)(A2A2)(kO)«A2' A2 - k»(KA» 

[
(A], Al - k) (A2' A2 - k) (KA) ] 

X A 1,A1 -k A 2 -k,A 2 !(K+A),t(K+A) 

= I [(AI' Al - k) (~?) (A.1A1).J 
i+j=k A1,A1 - k IJ Al - I,A l - I 

[
(AlAI) (A2A2) (KA) J [ (A2A 2) 

X Al - i, Al - i A z - j, A z - j t(K + A), . .. A z - j, A z - j 

(kO) (A2 , A2 - k)] 

ij A2 - k,Az 

X (A i(AI - i)A2 - j t(K + A) I AI' A z - j i(Az - k) t(K + A» 

X (AI - kj(A1 - i)A2 - j t(K + A) I A1 - k, A2 - j j(A2) t(K + A». (38) 

All i.f.'s which appear here, as well as the SU2 recoupling matrix, are known, except for the normalizing 
factor No(AlAz' KA) of the second i.f. on the right-hand side. We divide both sides by this factor. Then on 
the left-hand side we obtain the square of the matrix element under consideration. Afterwards we apply 
the third or fifth of formulas (l3.!) of Ref. 10 in order to simplify the expression on the right-hand side of 
(38). This allows us to carry out the summation with respect to i to obtain 

N A A KA _ ( 2(4A1 + I)! 
o( 1 2, ) - (K + A _ 2A] + 1)(K + A - 2A1 + 2A2 + 3) 

(4A2 + 3)! (2Al + 2A2 - K - A + 1) )1 
X (K + A + I)! (2A1 + 2Az - 2K)! (2A1 + 2A2 - 2A + I)! 

(
I (-I)"'+!I(4A1 + 2 - x)! (K + A - 2A1 + x)! (4A2 + 2 - y)! 

X "'.!lx! (2A1 - x + 1)! y! (2A2 - y + I)! (2A1 + 2A2 - 2K - x - y)! 

(K + A - 2A2 + y)! (2A1 + 2Az - K - A - x - y)! )-1 
X • (39) 

(2A1 + 2A2 - 2A - x - y + I)! (2K + 2A - 2A1 - 2A2 + X + y + I)! 
It is easy to see that the sum involved here corresponds to the nonstandard llj coefficient 

[ 

K + A + 1 2A1 + 1 2Az + 1 - K + A-I ] 

-!(K + A + 3) t(K + A + 1) t(K + A + 1) !(K + A + 1) , 

!(K + A + 1) t(K + A + 1) i(K + A + 1) -t(K + A + 3) 

(40a) 

which in absolute value (only the square of our matrix element is needed) is equal to the Ilj coefficient 

[

-HK + A + 3) -i(K + A + 3) -t(K + A + 3) -t(K + A + 3)] 
-t(K + A + 3) -!(K + A + 3) -!(K + A + 3) -t(K + A + 3) . 

- K - A - 3 2A1 + 1 2A2 + 1 - K + A-I 

(40b) 



                                                                                                                                    

OPERATORS AND FACTORS FOR THE GROUP Rs 

The last I1j coefficient can be calculated from the expression 

[
A A A A] 
A A A A 
2A I J L 

(-I)1'(p - 1)! (p - J)! (p - L)! 

2(2A + 1)(2A + 1)!3 (1 + J + L - p)! (p - I - J)! (p - I - L)! (p - J - L)! (p + I)! 

x [(2A -1)! (2A + I + I)! (2A - J)! (2A + J + 1)! (2A - L)! (2A + L + 1)!J! 

x ((1 + J + L - 2A)! (2A + L - I - J)! (2A - L - 1 + J)! 

(2A + L + 1- J + 1)! (2A + L - I + J + I)! 

(2A - L + I - J)! (2A + L + I + J + 2)!)1 x . 
(2A - L + I + J + I)! 

Here 
p = A + t(1 + J + L) 

is integer; otherwise, (41) vanishes. This follows from the symmetry of the llj coefficient. 
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(41) 

Equation (41) is deduced with the help of recurrence formula (20) for iJ.'s of Ref. 2. In the general case it 
has 12 terms. However, four of them disappear because of the symmetry of the representations to be coupled. We 
avoid two terms by specializing the values of parameters of types M and N, and two more disappear because 
the corresponding parameters of SU2 have maximal values. Of the four terms left, two vanish because of 
certain symmetry conditions. Hence, we are left with a recurrence formula involving only two i.f.'s, which 
allows us to obtain (41). The last one is a particular case of (29), which, however, we have not succeeded in 
deducing by the methods of Sec. 5. 

After performing all the operations needed for the normalization factor, we find the expression 

N A AKA) = (2A l + I)! (2Az + I)! (K - A)! (AI + A2 + A + I)! 

( I 2' 2(K + A + I)! (AI + A z - A)! V'(AAIAz) 

x (2K - 2A + 1)(2A + I)! (2K + 2)! (2K + 2A + 3)! 

(2AI + 2A2 - 2A + I)! (2Al + 2A2 + 2A + 3)! 

(AI + A z - K)! (K - Al + A z)! (K + Al - A 2)! )! 
x . 

(2K + 2Al - 2Az + I)! (2K - 2AI + 2Az + I)! (K + Al + A z + 2)! 

It is more simple to obtain the i.f.'s in coupling (AI.> and (kO). It is easy to find the relation 

[(~~) (~?) (AI.)J = (_I)K-A-i+1[K ~ A :- 1 ~ - ~ 21. + IJ, 
Ij Ij 00 j - I I - J 0 

(42) 

(43) 

which can be brought to a form useful for our purpose by the use of Eq. (A.22) of Ref. 2. To obtain (43), we 
use a relation similar to (38) and find 

[(~~) .(K - ~, 0) 
IJ 1- a,j - a 

(H)] = N[ (K - A, 0) (2a, 0) (~~)] 
00 i-a, j - a aa Ij 

x [(~~) .(K -~, 0) 
Ij 1- a,j - a 

(AI.>] [(AI.) (2a, 0) (AA)J( -1 )2\ 
aa aa aa 00 

The recoupling matrices of S U2 give the factor ( -1)2k 
only. The last i.f. on the right-hand side is unity in 
view of the restrictions imposed on the parameters of 
SUz and of the normalization condition. The second 
i.f. is an n.s.s.i.f. 1. It is expressed in terms of a triple 
stretched 9j coefficient by the methods of Ref. 6. This 

2a = k - K + A. (44) 

last one reduces to the CGC of SU2 on the right
hand side of (43). Normalization is evident. 

The general expression can be obtained by using 
the weight raising operator (T++)2I'. The correspond
ing expression is rather too extensive to be given 
explicitly. 
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We give here two more special cases: 

[
(),),) (kO) (KA) J = (_1)2HK+A+k+2i[K - A 2), + 1 K + A + 1J. (45) 

ii i, k - i 0, K - A k - 2i 2i + 1 k + 1 ' 

[
(A A) (2b,0) (AA)] = (_1)2'\+211+21'H (2A + 1)(2A + 2)(21 + 1»)1 

II ij 1'1' (2b + 1)(2I' + 1) 

{
A - l(/ - I' + i) A - HI' - I + j) b} (46) 

x A + lU + I - I' + 1) A + Hi + l' - I + 1) I + I' + l . 
As we see, the first one is expressed in terms of a CGC of SU2 , and the other in terms of a 6j coefficient of SU2 • 

VII. RECOUPLING MATRICES OF Rs 

The recoupling matrices for the semi stretched schemes have rather simple expressions. In the case of the 
first kind [conditions (19)], we have 

«K 1A1)(K2A2)( (K12A12) )(KaAa)(KA) II <K3A 3)(K2A 2)( (Ka2Aa2»(KIAl) (KA» 

= (KJ - Au K2 - A 2(K12 - A12)Ka - A3 ; K - AIIK3 - A3 , K2 - A 2(K32 - Aa2)K1 - AI; K - A). (47) 

The recoupling matrix of SU2 on the right-hand side 
can be expressed in terms of a 6j coefficient. Equation 
(47) can be proved in this way. 

As is well known, the recoupling matrix does not 
depend on the parameters labeling basis functions. 
On the other hand, its matrix elements are equal to 
the scalar product of the coupled states of the form 
(18). They are calculated by using the condition of 
orthogonality of the functions to be coupled. We take 
the resulting basis function, satisfying the conditions 

I+l=K+A, M=I, N=I. (48) 

We then use the inequalities 

Ii + Ii $ Ki + Ai' Iii + Iii $ Kii + Ai; (49) 

as well as the triangle conditions. The representations 

of the subgroup SU2 are coupled by the stretched 
CGC's which are equal to unity. The i.f.'s are to be 
obtained from Eq. (29) of Ref. 6, in which the 9j 
coefficient becomes double stretched and the corre
sponding Lf. becomes a CGC of SU2 of the form 

[
Kl - Al K2 - A2 K12 - A12J (50) 
II - II 12 - 12 112 - 112 . 

Hence, only CGC's of SU2 of the type (50) are left in 
the expression for the recoupling matrix. After sum
mation with respect to Ii - Ii (under the condition of 
fixed values of Ii + Ii)' we obtain the quantity iso
morphic to the recoupling matrix of SU2 • 

A similar result is obtained in the case of three 
representations coupled by the semistretched coupling 
scheme of the second kind. Then we have 

«KIAl)(K2A2)«Kl + K2 , A12»(KaAa)(Kl + K2 + K a, A>I 
I (KaAa)(K2A2)( (K2 + K a, Aa2) )(K1A 1)(K1 + K2 + K a, A» 

To demonstrate this formula, we take the basis func
tion of the resulting representation satisfying the con
ditions 

I = M = Kl + K2 + Ka, I = N = A. (52a) 

In such a case the expansion (18) involves i.f.'s equal 
to unity (from the normalization condition) when 

Ii = K i , Ii = Ai' Iii = Ki + K}, Ii} = Ai} 
(52b) 

and vanishes otherwise. Moreover, all the CGC's of 
one of the subgroups SU2 are equal to unity. Con
sequently, the recoupling matrix of Rs as a scalar 

= (AIAlAI2)AaA I AaA2(A32)Al.1\)· (51) 

product of functions is equal to the recoupling matrix 
of the second subgroup SU2 in this case. 

Similar results are obtained in the case of an arbi
trary number of basis functions coupled by the semi
stretched coupling schemes. By using the elements of 
the substitution group of parameters, we can widen 
the class of recoupling matrices of Rs expressible in 
terms of 3nj coefficients of SU2 • Some ofthe couplings 
can become nonstandard; however, the corresponding 
3nj coefficients remain standard quantities of the 
theory of angular momentum considered in Ref. 10. 
This means that the parameters which are the linear 
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combinations of parameters of R5 satisfy the standard 
triangular conditions as required by the theory. 

APPENDIX: A NEW EXPRESSION FOR THE 
9j COEFFICIENT 

The semistretched i.f. of the first kind may be 
treated in the same way as has been done with that of 

the second kind in Sec. 5. In such a case only one of 
four parameters iI' i2, A, and j2 are linearly inde
pendent, as follows from Eqs. (49) and (50). Con
sequently, the number of summation parameters 
reduces to four. Comparing the expression obtained 
with Eq. (29) of Ref. 6, we deduce the following ex
pression for the 9j coefficient: 

{:: :: 
11 12 

~} V(j2j1j)V( i1 i2i) 

; = (21 + 1)*V(i1j111)V(j2i212)VUli) 

! (1 + m1 + m2)! (11 + m1)! (12 - m2)!)*[ 11 12 1 ] 
X m1.m2. u (1- m1 - m2)! (11 - m1)! (12 + m2)! m1 m2 m1 + m2 

(_I)i-Hm1+m2(i1 + j1 - m1)! (i2 + j2 + m2)! 
X ----------~~------~~~--~~~~~~~~---------

Ul - il + m1)! (i2 - j2 - m2)! (il + j2 - i + m2)! (il + j2 - j - m1)! 

(i1 + j2 - i + m2 + u)! (1- i + j + u)! (2i - u)! 
X ------~~~~----~~~~------~--~~--~--------

(i1 + j2 + i + m2 + I)! u! (1 + i - j - u)! (j - i + m1 + m2 + u)! 
(Al) 

For CGC's of SU2 we use the second of Eq. (13.1) of Ref. 10 and renumerate the summation parameters in 
such a way that m1 is involved in six factorials. The corresponding sum is isomorphic with the expression 
of CGC's of SU2 • Applying the symmetry properties of CGC's, we bring the expression to a form in which 
the summation with respect to one of the parameters can be carried out with the help of one of the Eqs. 
(14.2)-(14.5) of Ref. 10. This gives us the expression for the 9j coefficient: 

{ 

~1 ~2 ~} _ V(i1i2i)V(j2j1j)V(lij) 
I I I -
.1 .2. V(i1j111)VU2i212)V(1l112) 

11 12 ] 
X ! (_IY1+ i 2-Hh+J2-H",H+z(l - 11 + 12 + x)! (211 - x)! 

"'.0 x! (11 + 12 - 1 - x)! (11 - i1 + j1 - x)! (1 - 11 - i2 + j2 + X + y)! 

(il + jl - 11 + x)! (1- j + i1 + i2 - Y - z)! (12 - i2 + j2 + y)! (2i2 - y)! 
X ------~~~--~--~~~--~~~--~------~~~~--~~~--~------

y! (i1 + i2 - i - y)! (i2 - j2 + 12 - y)! (i1 + i2 + i - Y + I)! (i1 - 11 - j2 + j + x + y)! 

U1 - j2 + j + z)! (i + j - 1 + z)! 
X ------~~~--~--~~--~----~------- (A2) 

z! U1 + j2 - j - z)! (l + i - j - z)! (2j + z + I)! ' 

involving only three summation parameters as com
pared with Eq. (25.5) of Ref. 10 which involves four 
summation parameters. 

From (55) it is easy to obtain particular cases of the 
9j coefficient. Unfortunately, the symmetry of the 
expression (55) is rather poor. However, it satisfies 
the combined symmetry properties, as is easily proved 
by substitutions making some of the parameters nega
tive [cf. Eqs. (24.19)-(24.31) of Ref. 10]. 
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Necessary and sufficient conditions are derived for the analytic extendability of a static two-dimen
sional space-time. For all allowed cases, explicit analytic extensions are determined together with their 
corresponding Penrose-Carter diagrams. Extensions are classified and further discussed in terms of 
these diagrams, with special consideration given to the question of bifurcate Killing horizons. The 
application of these results to four-dimensional relativistic space-times is illustrated with specific 
examples. 

1. INTRODUCTION 

An important step towards the understanding of 
any new solution of the Einstein field equations is the 
determination of its maximal analytic extension. The 
need for such extensions arises particularly often in 
the study of static solutions, and in the following 
manner. 

To make best use of the time invariance of static 
metrics in simplifying the field equations, we choose 
coordinates which cast the timelike Killing vector 
into the form 

~rt) = (0, 0, 0, 1). (1) 

In the event that the norm of this Killing vector 
should vanish on some hypersurface, defining a 
Killing horizon,! a coordinate singularity occurs. We 
can cite as well-known examples the Schwarzschild,2.3.4 
Reissner-Nordstmm,5.6 and Taub-NUP·8.9 metrics 
in their usual forms. In each case a maximal analytic 
extension has been found. 

It should be emphasized that the three examples 
are really quite special. In the first place, all are 
Petrov type D, a highly restricted class of metrics.10 

Secondly, and of more importance to us at the mo
ment, the analytic extensions are nearly all of essenti
ally the same sort, following the form employed by 
M. Kruskal for the Schwarzschild solution.4 Only in 
a few instances, such as e = m for the Reissner
Nordstmm solution,6 does the form of the analytic 
extension fall into a second category. This limitation 
arises, not from any lack of originality on the part of 
various authors, but from the basic character of the 
examples themselves. 

Recently, the author has made a study of static, 
axisymmetric, vacuum metrics, called Weyl metrics 
for brevity.11 Among these solutions are many that 
exhibit a Killing horizon, yet admit an analytic 
extension distinctly different from those of the three 

previous examples. Others fail even to admit an 
analytic extension, although possessing a horizon 
nonsingular in the usual sense. These findings strongly 
recommend a systematic investigation of Killing 
horizons from the viewpoint of the analytic extensions 
they necessitate. 

The seemingly most direct approach to the study 
of horizons, to analyze carefully the general static 
space-time, has one decisive drawback: The general 
static space-time is unknown, or at least so poorly 
known that little detailed information can be gleaned 
from it. Even treating the more specialized general 
Weyl solution, which is in principle explicitly known ,11 
is of limited value. From a technical standpoint, an 
analytic extension can be determined only from a 
detailed knowledge of the space-time's geodesics, a 
knowledge but rarely available for Weyl metrics. It 
is true that the geodesic equations often can be 
integrated approximately near the horizon, but this 
is not entirely satisfactory either. Moreover, even if 
it were technically feasible explicitly to construct 
analytic extensions for many Weyl metrics, the welter 
of details would obscure the fundamental features we 
wish to understand. 

For these reasons we subject to study the simplest 
possible metric, the general static, two-dimensional 
space-time. We call it a space-time only because its 
signature is (+ - ); it satisfies no particular field 
equations. 

In this limited domain we are able to establish 
necessary and sufficient conditions for analytic 
extendability. And when these conditions are met, 
we give explicitly the analytic extension together 
with its Penrose-Carter diagram.6.12 Surveying the 
results, we see how special a class Kruskal extensions 
actually are. This point is made sharper by a brief 
examination of bifurcate Killing horizons13 as they 
occur in static two-dimensional space-times. This 

606 
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sort of horizon, consisting of four branches meeting 
at a true point (in two dimensions), is shown to be 
unique to Kruskal extensions. 

The investigation is of primary value, we feel, to 
the extent that it provides a more intuitive under
standing of horizons and analytic extensions by 
abstracting their basic features from the complicating 
details which so often abound. Nonetheless, it is 
fair to ask what specific application the calculations 
have to four-dimensional, general relativistic space
times. 

Results seem to be directly utilizable only for static 
Petrov type D metrics. These decompose in a natural 
manner into two subspaces, one of which has signa
ture (+ - ).10.14 The analytic extension is performed 
with regard to that subspace only. Extension of the 
Schwarzschild solution, for instance, involves only r 
and t. We use special cases of the lesser known 
C-metric10.14 to provide additional examples in Sec. 5. 

Application to Weyl metrics in general is more 
difficult. However, it appears that the added prob
lems are only technical in nature. (Reference 11 
examines this in detail.) It is not unreasonable to 
suppose the same to be true of more general static 
space-times. 

2. EXTENSION THEOREM 

Any static 2-space of signature (+ -) can be co
ordinatized so that 

ds2 = rp-1 dX2 _ rp dt 2, 

Xl < X < X2 , - 00 < t < 00. (2) 

The connected open domain (Xl' X 2) is defined by 
requiring (i) that rp(x) be analytic and positive valued 
on the domain, and (ii) that the domain be not a 
proper subset of any connected open domain also 
satisfying condition (i). We assume that rp(x) itself 
admits no analytic extension. If it does, perform 
the extension and redefine the domain (Xl' X2) as 
necessary. The question at issue is whether there 
exists some analytic metric of which Eq. (2) is but a 
restricted part. 

It is evident that the metric can be extended only 
from one or both of the surfaces X = Xi' i = I, 2.15 
Moreover, extension is impossible even at X = Xi if 
the surface is singular or is located at infinity. We 
employ the usual definition for a singular surface: 
The curvature scalar, in this case 

(3) 

is unbounded in the limit as the surface is approached 
by all geodesics intersecting iU6 A surface is at 
infinity if no geodesic can intersect it at a finite affine 
distance. 

The geodesics are easily determined by quadrature, 

s = ± f [E2 - Erp(X)ri dx, (4) 

t = E f rp(X)-l ds, (5) 

E and E are constants of the motion. The geodesic is 
timelike, null, or spacelike as E = 1, 0, or -1. The 
affine parameter is s. 

Now suppose Xi = ± 00. Additionally, suppose 
rp(x)fx2 is bounded as X ~ Xi' Then Eq. (4) indicates 
that s ~ ± 00 for all geodesics approaching Xi' So 
instead suppose rp(x)fx2 is unbounded as X ~ Xi' 
However, now the scalar curvature is unbounded. In 
either case no extension is possible at Xi' This is the 
first step in the proof of our principal result. 

Theorem: The metric (1) is analytically extendable 
from the surface X = Xi (i = 1, 2) if and only if Xi is 
finite and rp(x) is analytic there. 

We next construct an analytic extension from the 
surface X = Xi (Xi henceforth assumed finite) valid 
whenever rp(x) is analytic there. Introduce the semi
geodesic coordinate system 

r = f (1 + rp)irp-1 dx + t, 

T =f(1 + rp)-irp-1 dx + t. 

The transformed line element 

(6) 

(7) 

(8) 

is the extension we seek, provided rp(x) is analytic in r 
and 'T at X = Xi' 

The original coordinate X is given implicitly in terms 
of rand T by 

(9) 

Therefore, (r - T) is an analytic function of X at Xi 
whenever rp is. Moreover, d(r - T)fdx ::;6: ° at Xi' 
These two facts imply that X is an analytic function of 
(r - T)Y Consequently, so is rp. Thus Eq. (8) is an 
analytic extension of Eq. (2), and sufficiency for the 
theorem is proven. 

Proof of necessity for the theorem rests upon the 
fact that lines of constant T in line element (8) are 
geodesics, the affine parameter being simply r. 
Because the scalar curvature Eq. (3) completely 
characterizes the space-time locally, it must be an 
analytic function of the affine parameter along any 
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geodesic if the metric itself is to be analytic along the 
geodesic.ls •19 An equivalent, but perhaps intuitively 
more obvious, statement is that the separation 
between nearby members of a family of geodesics, 
proportional to (1 + e/»t in Eq. (8), must be an 
analytic function of distance along the geodesics if the 
metric is analytic there. Viewed in either way this 
argument requires that e/> be an analytic function of x 
at Xi if an analytic extension is to be possible there. 

3. KILLING HORIZONS 

According to the extension theorem, analytic 
extension through a Killing horizon at Xi is possible 
only if e/> is expressible as 

e/>{x) = x"f{x). (10) 

Here n is a positive integer. The function f(x) is 
analytic and nonvanishing at Xi' which for notational 
convenience has been set equal to zero. The preceding 
section presented a coordinate patch adequate to cover 
one branch of the horizon at a time. It often proves 
valuable to be able to treat both the past and future 
branches simultaneously. The appropriate coordinate 
transformation is derived below. 

Introduce a null coordinate system 

ds2 = 21p(u, w) du dw. (11) 

Equations connecting line elements (2) and (11) are 

x~!c/> - t~e/> = 0, 

x!!c/> - t~e/> = 0, 

x"xw!c/> - t"twe/> = 1p. 

(12) 

be both analytic in u and wand nonvanishing at the 
horizon. 

Designate the past and future horizon branches, 
respectively, by w = ° and u = 0. We must require 
that e/>' ~u therefore be analytic and nonvanishing 
at u = 0, with an analogous statement for w = 0. 
But Xu = e/> . ~ u' and so we will demand that X be an 
analytic function of u and w at the horizon. The con
ditions placed on ~ and ?J by this requirement may be 
determined by formally expanding X as a power series 
in u and wand formally solving for the coefficients 
using Eq. (17). 

Instead, we explore the consequences of the 
appealing choice 

Hu) = f[e/>(tl)r1 du, 

?J(w) = f[e/>(W)rl dw. (19) 

The substitution of Eqs. (10) and (19) into Eq. (17) 
yields 

a In (x) + xl-np(x) 

= a In (u) + ul-nP(u) + a In (w) + wl-np(w), 

(20) 

where P is a power series, [P(O) =F ° for n =F I] and a 
is a constant (a =F ° for n = 1). 

It is evident from Eq. (20) that, for w bounded 
away from zero, x r-.J u as u -+ 0, except when n = 1. 
In that case, irrespective of whether w is bounded 
away from zero, x r-.J u . was u -+ 0. In either case, if 
we write 

z = x/(uw), (21) These may be rewritten in the equivalent forms 

t" = xw!c/>, 

tw = -xu!c/>, 

we are assured that z does not vanish on the future 
horizon branch. With this substitution, Eq. (20) 

(13) becomes 
and 

(14) 

The integrability condition on (13), tuw = twu , is 
seen to imply 

i.e., 
t = ~(u) - ?J{w). 

(15) 

(16) 

In terms of the arbitrary functions ~ and ?J, x{u, w) 
is implicitly defined as 

J[e/>{X)]-l dx = ~(u) + ?J(w). 

It is necessary only to require that 

1p = 2e/>~u?Jw 

(17) 

(18) 

F{u, w, z) = (u W z)n-Ia In (z) + P{u w z) 

- (w z)n-lp(u) - (u z)n-Ip{w) = 0. 

(22) 

At u = 0, the newly defined function F is analytic in 
all its arguments. Moreover, Fz does not vanish there: 

n = 1. (23) 

Consequently, z is defined implicitly by Eq. (22) as an 
analytic function of u and w at u = 0,l7 A similar 
statement holds for w = 0, and also for u = w = 0 
if n = 1. For n =F 1, however, the argument fails at 
u = w = o. 
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It is evident from Eq. (21) that x is analytic under 
the same conditions. Since substitution of the limiting 
expression for x cited above into Eq. (18) indicates that 
"I' is neither zero nor infinite at x = 0, we have the 
desired result, that Eqs. (11), (16), (17), and (19) 
represent an analytic extension of Eq. (2) at the 
Killing horizon x = O. Indeed, it represents simultane
ously an extension for all horizons of (2). 

Once again, it should be noted that the extension 
fails for u = w = 0 unless n = 1. However, examina
tion of the geodesic equations reveals that the point 
in question lies at an infinite affine distance, so that 
the failure of the extension there is to be expected. 
This feature of n ;of 1 horizons is discussed in more 
detail in the following section. 

4. THE PENROSE-CARTER DIAGRAMS 

Penrose-Carter conformal diagrams for the two
dimensional Killing horizons are of two basic types, 
Fig. 1 for n odd and Fig. 2 for n even. The former 
consists of a pair of static (I) and a pair of dynamic (IO 
blocks, while the latter is an infinite chain of static 
blocks (two sets, I and H). 

The mathematical complexity of the extension 
just given makes these block diagrams particularly 
useful in illustrating the general structure of a metric 
without requiring that the algebra actually be per
formed. Starting with the diagram for any horizon 
of the metric, one attaches the diagram for the 
next horizon at the appropriate shaded corner of the 
first diagram. This "building block" construction is 
continued until all extendable horizons of the metric 
are included. Finally, the remaining free shaded 
corners are identified as singularities, regions at 
infinite distance, etc., as the case may be. This was, 
in fact, the program carried out to obtain the diagrams 
for the examples of the next section. In the remainder 
of this section, we focus upon one particularly inter
esting aspect of these diagrams. 

FIG. 1. Penrose-Carter diagram 
for line-element (11), n odd. Solid 
dark lines represent horizons. 
Broken lines are typical Killing 
vector orbits (lines of constant xl. 
Dark points, not covered by the 
coordinate patch, are at infinite 
affine distance. Note, however, 
that this last statement does not 
apply to the center point for n = 1. 
The shaded areas, not necessarily 
covered by the coordinates (19), 
are shown to facilitate visualization 
of where this set of blocks can 
attach to others. The nature of the 
boundaries of the shaded regions 
(light lines) is determined by the 
behavior of ",(x) there. Region I is 
static, and region II dynamic. 

FIG. 2. Penrose-Carter diagram for line 
element (II), n even. Solid dark lines 
represent horizons. Broken lines are 
typical Killing vector orbits (lines of con
stant x). Dark points, not covered by the 
coordinate patch, are at infinite affine dis
tance. The shaded areas, not necessarily 
covered by the coordinates (19), are shown 
to facilitate visualization of where this 
set of blocks can attach to others. The 
nature of the boundaries of the shaded 
regions (light lines) is determined by the 
behavior of ",(x) there. Regions I and II, 
though not identical, are both static. 

In each diagram the vertices marked by heavy 
black dots represent spacelike or timelike infinity, 
as perhaps might be expected from the usual properties 
of conformal diagrams. In particular, the "origin" in 
Fig. I is at infinity and so, as previously noted, is not 
covered by the coordinate patch. This point serves to 
separate the four horizon branches, as the figure 
indicates. 

An exception to this statement occurs in the case 
n = I, for which the origin is perfectly accessible in 
finite time. Hence, the horizon branches actually 
intersect there, forming what Robert Boyer termed a 
bifurcate Killing horizon,l3 We see that, at least 
within the realm of this investigation, the bifurcate 
Killing horizon can occur only for n = 1. Let us further 
inquire into this situation. 

An n = I coordinate singularity in the positive
definite analog to line element (2) 

ds 2 = rp-l dx2 + rp dt 2 (24) 

is covered (to first order ignoring constant factors) 
by the quasirectangular coordinates 

p ~ xl sin (t/2), 

a ~ xl cos (t/2). (25) 

This is essentially the transformation from polar to 
rectangular coordinates, in which the n = 1 coordi
nate singularity of (24) is the origin. There is, however, 
no question of carrying out an extension for any 
other value of n: The point in question now lies at 
infinity. 

In the same approximation an n = 1 horizon is 
covered by 

p = (u - w)/2 ~ xl sinh (t/2), 

a = (u + w)/2 -::= xl cosh (t/2). (26) 

No similar representation exists for n > I. This we 
would expect, since such a representation would 
cover the origin. The correspondence between the 
remarks of this paragraph and those of the preceding 
one are fairly clear. That bifurcate Killing horizons 
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fail to occur for n =F 1 is, from this standpoint, 
attributable to the absence of analytic extensions in 
the analogous positive-definite 2-spaces. 

Incidently, Eq. (26) indicates the relationship be
tween the present formulation (for n = 1) and the 
general n = I extensions derived by various authors. 5.14 

It also suggests why these other methods are not 
readily applicable for n > I. 

5. APPLICATIONS 

The analysis presented above finds immediate 
applications to static Petrov type D metrics, which 
naturally decompose into two parts, one trans
formable to Eq. (2), the other to Eq. (24).10.14 
Examples of n = 12.4·5.14 and static n = 26 are ade
quately covered in the literature. We therefore restrict 
ourselves to dynamic n = 2 and n = 3 cases. There are 
no known instances of n > 3 among static Petrov type 
D metrics. Neither are there any with n not an 
integer but a nonintegral real number exceeding two. 
For such a case, the space-time would not be analyti
cally extendable at Xi' although the curvature invari
ants would be regular there. 

The two examples are special cases of the C
metric 10.14: 

ds2 = (x + y)-2{j(X)-1 dx2 + f(x) dr/J2 

+ [-f(_y)]-ldy2- [-f(-y)]dt2}, 

fez) == Z3 + az + b. (27) 

We are interested only in the y - t part of the line 
element, the x - r/J portion being easily extended 
where necessary. Ifwe remain away from x + y = 00, 

which is singular, and x + y = 0, which is at infinity, 
the effect of the multiplicative factor (x + y)-2 can be 
ignored. What remains is precisely Eq. (2), with 

r/J(y) = y3 + ay - b. (28) 

Penrose-Carter diagrams of the two examples are 
immediately obtainable as follows. 

Let constants a and b be chosen so that 

r/J(y) = (y - Y1)(y - Y2)2, Y > Y1 > Y2 > 0. (29) 

The block diagram for the horizon at Y1 is Fig. 1, 
while that at Y2 is the dynamic analog of Fig. 2 (i.e., 
rotated through 90°) for n = 2. The diagrams are 
joined through region II of Fig. 1. Figure 3 is, strictly 
speaking, not the maximal extension, because it 
shows all the identical n = I blocks attached at both 
ends to the same two n = 2 dynamic chains. In fact, 
each n = 1 block attaches at one end or the other to 
a new chain. The resulting network is difficult to 
imagine, much less to draw. No causality violations 
arise from the identifications made in Fig. 3. 

FIG. 3. Penrose-Carter diagram for constant x-</> slice (x > 0) 
of the C-metric. Parameters are chosen such that an n = 1 horizon 
occurs at y = Y1, and an n = 2 horizon at y = y •. The wide black 
lines, y = 00, denote singularities. The surfaces y = -x are regular 
and at null infinity. Dark points are also at infinity. Dashed lines are 
Killing vector orbits, indicating that region I is static, but IT and III 
dynamic. 

Next let a = b = 0 so that an n = 3 horizon 
occurs at y = O. The result is Fig. 4. In both Figs. 3 
and 4 the behavior of the diagrams near the singular
ities and at null infinity is easily added by considering 
the previously neglected effect of (x + y)-2. Both 
examples illustrate quite well the building block 
fashion in which Penrose-Carter diagrams can be 
constructed. 

Reference II contains applications of our results 
to Weyl metrics. There all values of n occur. Moreover, 
cases arise where C2 extensions are possible although 

8 

FIG. 4. Penrose-Carter 
diagram for a constant 
x -</> slice (x > 0) of the 
C-metric. Parameters are 
chosen (a = b = 0) such 
that an n = 3 horizon 
occurs at y = O. The 
wide black lines, y = 00, 

are singular surfaces. 
The surface y = -x is 
regular and at null in
finity. Dark points are 
also at infinity. Killing 
vector orbits (dashed 
lines) indicate that region 
I is static, and II dy
namic. 
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analytic extensions are not. These correspond gener
ally to Eq. (10) but with n any real number greater 
than two, rather than only an integer. Minor modifi
cation of the procedures given in this paper suffice to 
provide such extensions. 
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It is shown that any basis of covariant polynomials for a two-particle scattering process yields invariant 
amplitudes free of kinematical singularities, provided (a) the total number of basis polynomials equals 
the number of spin space components of the scattering amplitude and (b) the polynomials of each of the 
two parity signatures are separately linearly independent at all points where three of the particle 4-
momenta are linearly independent. This result allows one to directly identify good basis sets without going 
through the very tedious algebra involved in comparing them to the sets of Hepp and Williams. The 
latter are not useful for practical applications because the spinor indices belonging to different particles 
a.re coupled and these sets do not transform into themselves under the relevant discrete symmetry opera
tIOns. 

I. INTRODUCTION 

The description of a scattering process in terms of 
invariant amplitudes is useful because they have 
simple analytic properties and can trivially satisfy the 
various symmetry requirements. For this purpose, 
one must find a covariant basis that exhibits the 
appropriate symmetries and, moreover, ensures a 
decomposition into invariant amplitudes free of 
kinematical singularities. In this paper we prove a 
theorem that enables one to check by inspection 
whether a given basis is a satisfactory one. 

Heppl has rigorously proven that any set of holo
morphic covariant functions M(k) can be written in 
the form 

M(k) = Z Als)yi(k), 
i 

where the "standard covariants" yi(k) are matrices 
on the spinor indices and polynomials in the 4-vectors 
k = {kl' ... ,kn }. The invariant amplitudes Ai(s), 
which are functions of the independent invariants 
S = {Sl' ... ,sm} formed from the ki' are holo
morphic except on the s-space image of k-space 
singularities of the functions M(k). In general, a 
minimal set of standard covariants, i.e., a set whose 
number is just the number of values that the spinor 
indices take on, does not exist. But for the case of 
scattering amplitudes describing two incoming and 
two outgoing particles, and subject to the mass shell 
and four-momentum conservation constraints, Hepp 
proved that one can find a minimal set of yi(k) 
having positive and negative signature under parity 
and whatever other discrete symmetry operations 
transform the particular process under consideration 
into itself. 

To find the relevant standard co variants for any 

given M(k), one must find a set of polynomials such 
that all covariant polynomials with the same spinor 
index types can be expressed in terms of them for all 
allowed values of the complex 4-vectors k. Hepp's 
proof is, in effect, a proof that such a basis exists and 
that any such basis gives a holomorphic decomposi
tion (one free of kinematical singularities) into 
invariant amplitudes of the given holomorphic 
functions M(k). Any other form for physical scattering 
functions is equivalent to the 2j + 1 spinor form; thus 
Hepp has given a rigorous justification of the pre
scription originally developed by Hearn2 for perturba
tion theory. Recently Scadron and Jones3 have found 
some of the relations needed to apply this method to 
two-particle processes with arbitrary spins, and many 
other relations have been found by the author of this 
paper. 4 

Several examples of sets of covariants that give a 
holomorphic decomposition have been given by Hepp 
and, independently, by Williams,S but these do not 
transform into themselves under the discrete sym
metry operations. To find a satisfactory basis, it is 
sufficient to show how anyone of these sets can be 
written as linear combinations of covariants having 
definite signature under P, C, T, and exchange 
symmetry, with coefficients that are polynomials in 
the invariants. For those processes in which two of the 
four particles are spinless, this procedure is not too 
tedious and all the required covariants have been 
found.4.6·7 

When more than two spinning particles are in
volved, the algebraic problems become rapidly unman
ageable as the spins increase.3.4·7.8 Thus, although the 
prescription of Hearn and Hepp solves the problem in 
principle, it does not solve it in practice. 

612 
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The main aim of this work is to exhibit, in concrete 
terms, the origin of the difficulty in obtaining holo
morphic invariant amplitudes and to develop a 
simple criterion that allows one to verify directly 
whether any given basis gives amplitudes that are free 
of kinematical singularities. The criterion is essentially 
this: Any minimal set of covariant polynomials is a 
good set if all the co variants of positive parity signa
ture are linearly independent, and all the covariants of 
negative parity signature are linearly independent at 
all points where three of the particle momenta are 
linearly independent. 

The core of the argument is a detailed description 
of the constraints that Lorentz covariance and 
analyticity impose in neighborhoods of points where 
only two of the particle 4-momenta are linearly 
independent. Once the nature of the constraints is 
clearly understood, the essential requirements on the 
standard co variants will be easy to see and the proof 
of the theorem will be straightforward. 

Aside from the Hearn-Hepp procedure, the only 
good criterion that has been previously given for 
justifying the absence of kinematical singularities in a 
set of invariant amplitudes is that of Williams. 5 

However, Williams' arguments were for a particular 
set of covariants that has no simple relation to the 
discrete symmetries. 

One reason that the standard co variants given by 
Hepp and Williams have not found practical applica
tion is that all spinor indices with the same properties 
under proper Lorentz transformations are coupled 
with Clebsch-Gordan coefficients.9 These couplings 
join together parts having different discrete symmetry 
properties, and also make the results impracticable 
for substitution into the unitarity relations. Any 
useful basis must avoid coupling spinor indices 
belonging to different particles, and this does not 
naturally emerge if one starts from the sets of Hepp 
or Williams. By our simple criterion, any proposed 
basis can be checked directly without comparing it to 
all the other polynomials having the same spinor 
index types or to the sets of Hepp or Williams. 

To apply our criterion, the linear independence of 
the basis sets of each parity signature must be checked. 
This problem, although not trivial, is simpler than the 
one involved in previous methods. A paper dealing 
with procedures for checking the linear independence 
of basis sets is being prepared. 

The general background material needed for this 
work is scattered in various places and some of it is 
unpublished. Many of the essential results are ob
scured by the abstruse mathematical forms of the 
original papers, and there is no satisfactory account of 

the general situation anywhere in the literature. A 
secondary aim of this paper is therefore to provide a 
systematic simple description of the previous results 
that form the basis of the present work. These include 
a theorem of Stapp,lO.l1 which states that scattering 
functions are covariant under proper complex Lorentz 
transformations at all points where they are regular, 
and some basic properties of sets of complex 4-
vectors.12 We also discuss and extend a theorem of 
Heppl and Williams5 that allows one to express a 
multi sheeted invariant function of 4-vectors as a 
function of invariants formed from them. 

We confine our discussion to those cases in which 
all four particles are massive, since Zwanziger13 has 
found aU the standard covariants having definite 
parity signature when one or two are massless. 

II. BASIC PROPERTIES OF TWO-PARTICLE 
SCATTERING AMPLITUDES 

A. The S Matrix 

A brief review will establish the notation and 
summarize some well-known properties. We consider 
a scattering process in which particles 1 and 2 are 
incoming, and particles 3 and 4 are outgoing. To each 
particle one may assign a wavefunction "Pa.,i(k j ) with 
the norm 

where k j is the 4-momentum and OC i the spin quantum 
number. The particle type is specified by tj = (m;. jj, 
qi)' where mj is its mass,j; is its spin, and qi stands for 
aU additive internal quantum numbers. It is convenient 
to introduce the notation K; = (k; , t j ). 

The relationship between measurements on initial 
and final particles is expressed by the S-matrix ele
ments 

S(Kb; Ka), 
OCb ; OCa 

where the subscripts a and b indicate incoming and 
outgoing particles, respectively. The probability that 
the outgoing particles will be in the state specified by 
"Pb if the incoming particles were in the state specified 
by "Pa is IS("Pb; "Pa)12, where 

4 J dki 3' 4' 
S("Pb; "Pa) = lJ k02. "Pa.3 (k3)"Pa.4 (k4)S(Kb; Ka) 

t~l t a~ CXb; OC
a 

X 1f«1\k1)"P«.\k2). (2) 

If the spin indices are in "canonical" form, i.e., if 
(Xi is specified with respect to the 3 axis in the rest 
frame of particle i, the invariance of probabilities 
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under a simultaneous proper orthochronous Lorentz simple covariance property from (3), (4), and (All): 
transformation of both incoming and outgoing states 
leads to the relation14-16 M(AKb; AKa) = D<ib\A)abab' D(ia'(A*)"."a'M(Kb; Ka), 

x D<ia)(A(ka)*)"nlJ.a'S(K b ; Ka), (3) 
11.~; ci~ 

The notation is such that 

and 

" D(ib)(A(kb»ablJ.b' = IT D(i/)(A(ki»a,a" 
i=3 

2 

D<ia)(A(ka)*)"al1.a' = IT D<ii)(A(ki )*)l1.i"·" 
i=1 

According to the spinor calculus convention intro
duced in Appendix A, each of the raised indices on the 
transformation matrices is summed with the corre
sponding S-matrix index, and dots are introduced over 
incoming spin indices to indicate that they transform 
like the complex conjugate of outgoing ones, Here 
A = A(A, A *) E Lt, where, as explained in Appendix 
A, A is a matrix in SL(2, C) and A(ki ), defined 
by (All), is the matrix in SU(2) corresponding to the 
"Wigner rotation" in (AlO). We have adopted the 
convention AK; = (Ak;, t;). 

B. The M Functions 

The fact that the spin transformation matrices in (3) 
depend on the 4-momenta of the particles leads to 
"kinematical" singularities in the 4-momenta when 
one analytically continues such an expression out of 
the physical region of the original process. This, in 
turn, leads to somewhat complicated crossing relations 
between the amplitudes for the various physical pro
cesses that are connected by analytic continuation. 
To simplify the crossing, analytic, and Lorentz trans
formation properties, it is convenient to introduce the 
spinor amplitudes, or M functions.14- l7 

The M functions with lower undotted spinor indices 
assigned to outgoing particles and lower dotted indices 
to incoming particles are defined by 

X D(ia)(S!J*(ka»l1.al1.a'S(Kb ; K a), (4) 
Cl~; ci~ 

where S!J(k i ), defined in (A9), is the Hermitian matrix 
in SL(2, C) corresponding to the Hermitian "boost" 
L(ki ) in (A8) that carries ki = (m;, 0) into k i . Then, 
using A = A(A, A *), we easily verify the following 

!Xb; cia !X~; ci~ 
(5) 

One can use instead the M functions with all lower 
undotted indices. It may be verified from (5), (A4) , 
and 

M(Kb; Ka) = D(ia)(a' kaC-1/ma)aa"a'M(Kb; Ka) (6) 

that 

M(AKb; AKa) = D<ib)(A)abab'D(;a)(A)a.aa'M(Kb; Ka). 

(7) 

The choice of index type has no effect on the physics 
or on the analytic properties. The matrix that trans
forms a particular spinor index from one type to 
another is a holomorphic function of that particle's 
4-momentum. 

For a given process, M(Kb; Ka), where we suppress 
the spinor indices, is expressed as a sum of a "no
scattering" part Mn'(Kb; Ka) and a "connected part" 18 

MO(Kb; Ka) = j64(kl + k2 - k3 - k4)Me(Kb ; Ka), 

(8) 

Equation (8) defines Me functions that are free of 
conservation delta functions. To avoid specifying 
spinor index types, one may write their physical region 
covariance properties, of which (5) and (7) are 
particular examples, in the form 

Mc(A(A, A *)K) = AiA, A *)Me(K), (9) 

where K = (Kb; Ka). The Me functions are said to be 
Lt covariant in the physical region of the process 
tl + t2 ---+ t3 + t4 . If all four particles are spinless, 
then A.(A, A *) == Ion the right-hand side of (9) and 
the single Me function is said to be LJ invariant in the 
given physical region. 

III. PROPERTIES IN COMPLEX FOUR
MOMENTA SPACE 

A. Stapp's Theorem 

Let :1\,3 denote the set of points k = {kl' k2' k3' k 4} 

in complex 4-vector space that satisfy the four mass
shell constraints k i • k i = (mi )2 > 0 and the four 
conservation-law constraints kl + k2 = ka + k4 • The 
Me functions defined by (8) are assumed in S-matrix 
theory to be analytic functions over :1\,3 except for 
dynamical singularities.lo,lu9 The set:l\,3 is a subset of 
the space of four complex 4-vectors. The notion of 
analyticity on such a subset is a standard mathematical 
concept.20 
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As usual we use the term holomorphic to designate 
the property of being analytic and single valued. A 
domain is a connected open set, and, for our purposes, 
it is sufficient to regard the "domain of holomorphy" 
of a function as a union of sheets, a sheet being the 
maximum domain whose points map one-to-one onto 
points in .]\,3.21 The sheets may overlap; in fact, the 
boundaries of the sheets are somewhat arbitrary, and 
any point on the domain of holomorphy lies on the 
interior of some sheet. One does not include poles and 
branch points on any sheet, even though it is custom
ary in physics to speak of a pole as lying on a 
particular sheet when it lies on the boundary of that 
sheet. 

For a given scattering process there is an Me 
function corresponding to each combination of values 
of the spinor indices. Following Stapp,lo.n we define 
the domain of regularity !R of this set of Me functions 
to be the intersection of their domains ofholomorphy; 
i.e., !R is the largest (multi sheeted) domain to which 
all of these Me functions can be simultaneously 
analytically continued. The Me functions are known to 
be Lt covariant [see Eq. (9)] at points lying in the 
physical region for which they were originally defined, 
but what can be said about covariance at other points 
on !R? Before stating Stapp's theorem, which gives a 
precise answer to our question, we require a few 
definitions. 

A set of tensor-valued functions F(k) is said to be 
L+ covariant on a set of points S E .]\,3 if 

F(A(A, B)k) = A.(A, B)F(k), (10) 

whenever k and A(A, B)k are in S. As explained in 
Appendix A, the matrices A and B are in SL(2, C) 
and A(A, B) E f:+, the group of proper complex 
Lorentz transformations. The notation on the right
hand side of (10) indicates that the matrix DUi)(A) 
acts from the left on the ith spinor index of F(k) if it is a 
lower undotted one, whereas the matrix D(;'>CB) acts 
on it from the left if it is a lower dotted one. 

The L+ orbit, L+k, of any point k E.]\,3 is the set of 
all points Ak = {Akl' ... ,Ak4 } obtained by letting 
A E L+ take on all possible values. 

Stapp'S TheoremlO.11.22: Let the Me functions for a 
given process be L! covariant and holomorphic on a 
real open connected set in .]\,3 corresponding to phys
ical points. Then the domain of regularity !R of these 
Me functions has the following properties: 

81. !R is a union of L+-invariant sheets '\La; i.e., if 
the image in .]\,3 of a sheet '\La contains a point k, 
then this image contains all points on I:+k. 

S2. The Me functions are L+ covariant on each sheet 
'\La. That is, if the image in .]\,3 of a sheet '\La contains 
a point k, then 

Me(A(A, B)K) = A.(A, B)Me(K), (11) 

for each A(A, B) E L+. 

S3. Any bounded connected set of physical points 
on :R. is contained in some single L+-invariant sheet 
'lL 23 

a' 

For a process involving four spinless particles, one 
may replace L+ covariant by L+ invariant in statement 
S2. A function F(k) is L+ invariant on a set of points 
Sin .]\,3 if it satisfies (10) with A.(A, B) == I whenever 
k and A(A, B)k are in S. 

B. L+ Orbits in .]\,3 

We intend to investigate the constraints that L+ 
covariance, as specified by Stapp's theorem, imposes 
at certain points on the domain of regularity of the Me 
functions. But first we need some properties of points 
k in .]\,3 and their L+ orbits. 

At any point k = {kl' ... , k 4} in .]\,3 we may define 
the scalar invariants k i • k j • For the case of an arbi
trary number of particles, one should also consider the 
pseudoscalar invariants formed by contracting the 
completely anti symmetric tensor €/l";'P with the 4-
momenta. The invariants taken together are then 
referred to as L+ invariants, since they are invariant 
under any A E L+, while the scalars alone are referred 
to as L invariants, since they are invariant under any 
A E L = L+ V C, where C is the set of improper 
Lorentz transformations. In the case under considera
tion, the pseudoscalars vanish identically because 
4-momentum conservation allows at most three of the 
momenta to be linearly independent at any point. 
Consequently, it makes no difference whether we refer 
to two distinct points as having the same L+ invariants 
or the same L invariants, and we will use the former of 
these two terms. 

All points on the same L+ orbit have the same L+ 
invariants. But one cannot always specify orbits by 
the values of their invariants, since two distinct points 
with the same L+ invariants do not necessarily lie on 
the same 1:+ orbit, as will be discussed below. 

Let n be the number of linearly independent vectors 
at the point k = {kl' ... , k4 }, where the vectors are 
ordered so that the first n are linearly independent. 
Because of 4-momentum conservation, n ::;;; 3, and, 
because the mass shell condition prevents the 4-
momenta from vanishing identically, n ~ 1. Let us 
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define the Gram determinant 

and let r be the rank of this determinant at the point 
k. Hall and Wightman12 gave the following relation
ship between the rank of the Gram determinant at any 
point and the number of linearly independent 4-
vectors at that point. 

r n 

3 3 
2 2 or 3 
1 1 or 2 

The possibility of having n > r is, as will also be seen 
below, a consequence of the fact that one can have 
complex lightlike vectors in the space orthogonal to 
the first n vectors when n < 3. 

From the considerations of Hall and Wightman 
regarding the properties of complex 4-vectors, we can 
make the following remarks about points and orbits 
in ,](,3. 

HI. (a) At any r = n = 3, 2, or 1 point, one can 
write 

r 

ki = IAijk j , for i = r + 1, ... , 3, (13) 
;=1 

where the Aij are finite scalar coefficients. (Recall 
that the first r = n vectors are linearly independent 
at the given point and that k4 is globally determined 
by 4-momentum conservation.) 

(b) If k and k' are any two r = n points with the 
same L+ invariants, they lie on the same L+ orbit. 

H2. (a) There exist r = 2, n = 3 points with the 
same L+ invariants as any given r = n = 2 point. For 
example, consider the point k determined by (13) with 
r = 2. In the space orthogonal to the two linearly 
independent vectors kl and k2' one may define 
unit vectors e1 and e2 such that e; . e; = - b ii. Then 
define 

(14) 

It follows that w± . k1 = w± . k2 = w± . w± = O. Now 
consider two points k(+) and kH such that k(±) = 
{kl' k2' k 3(±), k 41±)}, where 

2 

k31±) = k3 + Cw± = IA3iki + Cw±. (15) 
;=1 

Here k1' k2' and k3 are the same as for the r = n = 2 
point in (13), while C:;t. 0 is an arbitrary real or 
complex number. The points k(+) and kH are two 
distinct n = 3 points with the same L+ invariants as 
the r = n = 2 point obtained by putting C = 0 in (15). 
They are related by an improper Lorentz transforma
tion that changes w+ into w_, while leaving k1 and k2 
the same. 

(b) The points k(+) and kH determined by (15) 
and the r = n = 2 point obtained by putting C = 0 
in that equation all lie on different L+ orbits. Any 
other r = 2, n = 3 point with the same L+ invariants 
lies on either the L+ orbit of kl+) or the L+ orbit of k(-). 
Any point on one of these two orbits is related to any 
point on the other by means of an improper Lorentz 
transformation. As a consequence of Hl(b), we may 
state that, for any set of values of the L+ invariants 
for which the rank of the Gram determinant is 2, 
there exist three different L+ orbits. 

(c) Consider the limit C --+ 0 in (15), which yields 
an r = n = 2 point with the same L+ invariants. This 
means that any neighborhood of an r = n = 2 point 
contains points of every r = 2, n = 3 orbit with the 
same L+ invariants. 

H3. (a) Similar remarks enable one to construct an 
infinite number of r = 1, n = 2 orbits with limit points 
on a given r = n = 1 orbit. In this case, however, any 
two r = 1, n = 2 points related by an improper 
Lorentz transformation lie on the same L+ orbit. 

(b) The occurrence of r = 1 points in ,](,3 is possible 
only if the sum of some of the masses equals the sum 
of the others. This follows from the conservation of 
energy and the fact that every r = n = 1 orbit 
contains a point of the form k; = (±m;, 0) for all 
kiEk. 

H4. We define the little group g+(k) of a point k to 
be the set of proper complex Lorentz transformations 
that leave k invariant; i.e., A E g+(k) --+ det A = 1 
and Ak = k. At any point k with n = 3, the only 
matrix in g+(k) is the unit matrix. However, if 
r = n ~ 2, g+(k) is an infinite set. 

c. The 1+ -Saturated Kernel of the Domain of 
Regularity 

We emphasize the fact that to a given point k E,](,3 

there can correspond many points on the domain of 
regularity :1\ of the Me functions for a given process, 
although at most one point on any sheet 'l1a c :1\. In 
the remainder of this paper, when we speak of a point 
k with certain values of rand n lying on :1\, we actually 
mean a point on :1\ whose image k in ,](,3 has these 
values of rand n. 
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Thus Stapp's theorem in Part A of this section says 
essentially that (a) ~ is a union of 1:+ orbits, i.e., if a 
point k lies on ~, there is an 1:+ orbit I:+k that lies on ~ 
and contains the given point, and (b) the MC functions 
are 1:+ covariant on ~, i.e., the MC functions at any 
two points k and A(A, B)k on the same t+ orbit on ~ 
are related by (11). [If all four particles are spinless, 
the MC function is 1:+ invariant on~, i.e., As(A, B) == I 
in (11).] 

If an r = n < 3 point k' lies on ~, then every r y!: n 
orbit for which it is a limit point lies on ~. This is 
because there is some full neighborhood Ji' in ~ of the 
point such that there is a one-to-one mapping between 
points in X and points in a neighborhood N(k') E 
.](,3-according to H.2(c) and H.3(a), N(k') contains 
points of every r y!: n orbit in .](,3 for which the r = n 
point k' E N(k') is a limit point. By Stapp's theorem 
~ must contain the full t+ orbit of any point in X. 

If an r y!: n point lies on ~, the r = n limit points 
of its t+ orbit do not necessarily lie on ~.l The 
I+-saturated kernel ~(+) of ~ is the subset obtained by 
deleting from :R all r =;tf:. n orbits whose r = n limit 
points do not lie on ~.1.5.11 All physical points on ~ 
lie on ~(+) because their image in .](,3 is real and the 
construction in (14) and (15) shows that r y!: n points 
in .](,3 are always complex. 

In the remainder of this paper the symbol '\La(+) 
designates the set '\La n ~(+), where '\La is some 
I:+-invariant sheet on~; i.e., '\La

H ) is the set obtained 
by deleting from '\La all r y!: n orbits whose r = n 
limit points do not lie on :R. We refer to 'lLa H) as the 
1+ -saturated kernel of the t+ -invariant sheet '\La. 25 

D. Kinematical Restrictions 

The number of MC functions for a given process is 
the same as the number of different combinations of 
values of the spinor indices. This is given by 

4 

N = IT (2ji + 1). (16) 
i~l 

Equation (16) gives the number of independent 
scattering experiments at a fixed physical value of the 
4-momenta, at least on a dense subset of the physical 
points. Of course, for the MC functions under con
sideration discrete symmetries can lead to a relation 
between the results of various experiments, so that the 
number that are independently determined are less than 
the number in (16). Such restrictions will be ignored 
in this section and will be the concern of the next one. 

We will show that, at any point on ~(+) at which the 
rank of the Gram determinant is less than 3, L+ 
covariance leads to linear relationships between the Me 

functions; i.e., there are kinematical restrictions at 
such a point.26 For any r = n = 2 point k on~, this 
statement follows by letting A(A, B) be a matrix in the 
little group, ~+(k), defined in remark H4. Then the 
L+ covariance relation (11) becomes 

MC(K) = AiA, B)Mc(K). (17) 

We also find kinematical restrictions at any r = 2, 
n = 3 point lying on ~(+). The trivial extension of our 
results to r = I points will not be needed in this paper. 

We restrict our attention to a single point on any 
given orbit on ~(+), since the number of Me functions 
whose values are independent is the same at all points 
on the orbit. Any r = n = 2 orbit on ~ contains a 
point whose image k E.](,3 is such that each of the 
vectors k i E k has no components along the 1 and 2 
axes. Then, from (AI), 

(]. k. = (ki)O + (k;)3 0 ) i = 1 .,. 4. 
• 0 (ki)O - (k j )3 ' " 

(18) 

Let us now make the following choice for the 
matrices A and BE SL(2, C), where A is any complex 
parameter: 

A = (exp (-A/2) 0), (19a) 
o exp (Al2) 

B = (exp (Al2) 0 ). (19b) 
o exp (-A/2) 

From (A2) , it follows that A(A, B)k j = k j for all 
i = I, ... , 4, when k is a point in .](,3 of the form in 
(18), so that A(A, B) belongs to the little group ~+(k). 

Because of (A3), we have 

DU')(A) = exp(-AJ3(Jj,), 

D(j;\B) = exp (AJaUi'). 

(20a) 

(20b) 

Suppose that the particles are ordered so that the 
first I have lower undotted spinor indices and the 
remaining 4 - I have lower dotted ones, the assign
ment of index types to individual particles being 
completely arbitrary. Then, because of (17) and (20), 
we have, at any point k of the form (18) lying on ~, 

MC(K) = exp [-A(±els - ± Pt)] MC(K), (21) 
(el)(P)'~1 t~l+l (el)(P) 

where (el) = ell ... ell' and (t3) = t31+l ... t34' are not 
to be confused with the outgoing and incoming spinor 
indices of the preceding section. Equation (21) 
requires that 

MC(K) = 0 if 2 els - 2 Pt =;tf:. O. (22) 
(el)(P) t 
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Therefore, the MC functions have "kinematical 
zeros" at any such point. At other r = n = 2 points 
the relationship among the values of the Mc functions, 
as given by (17), will be more complicated, but the 
number of such linear relationships will be the same 
as the number of "zeros" in (22). It is convenient to 
continue to use the term "kinematical zeros" to refer 
to the restrictions at these latter points. 

Now consider any r = 2, n = 3 orbit on :R(+) for 
which the r = n = 2 point k on :R that we have just 
considered is a limit point. There is a point on the 
orbit whose image k(+) or kH in J{,3 is such that each 
vector ki<±l E k<±l has the form k/±) = k; + Ciw±, 
where k; is given by (18), C; is a real or complex 
number, and W± = e1 ± ie2 is a complex lightlike 

In particular, (25) implies that 

MC(K<±l) = MC(K) if Z IX. = Z Pt. (26) 
(IX)(/J) (IX)(/J) • t 

Furthermore, for the limit in (25) to be consistent with 
the result in (22) for the r = n = 2 point k on :R, we 
must have 

M C(K(+» = 0 'f '" < '" P 
1 "'" IX. "'" t, 

(IX)(/J) t 

(27a) 

MC(KH) = 0 if Z IX. > Z Pt. (27b) 
(IX)(/J) t 

However, there is no kinematical restriction on the 
values of the M C functions with Z. IX. > Zt Pt at a 

vector in the space orthogonal to the k i . Choosing the 
real spacelike vectors e1 and e2 to be parallel to the 1 
and 2 axes respectively, we have from (18) and (AI) 

(J' k.(±) = (ki)O + (ki)3 (1 ± 1)Ci ). (23) 
• (1 =t= l)Ci (k;)O - (ki )3 

Using A(A, B) defined by (19) and (A2), but 
restricting ourselves to real values of A, we find that 

lim A(A, B)k/±) = ki' i = 1, ... , 4, (24) 
;. .... ±oo 

with k; given by (18). Since the MC functions are 
continuous at the point k on :R, we have, using (11), 
(20), (24), and the obvious notation K i (±) = (k/±), Ii)' 

(25) 

point on :R(+) whose image in J{,3 is k(+) and no such 
restriction on those with Z. IX. < Zt Pt at a point 
whose image is k(-). Either of Eqs. (27) is therefore 
sufficient to determine the number of kinematical 
zeros at an r = 2, n = 3 point on :R(+), this number 
being exactly half the number given by (22) for an 
r = n = 2 point on :RY 

By adding up the number of MC functions not 
restricted by (22) or (27), we get the number of such 
functions whose values are free of kinematical 
constraints at any r = 2 point on :R (+). The result is 
given in Table I, which is actually valid for MC 
functions with any number of particles, but for which 
at most four have spin.4 

TABLE I. Number of independent Me functions at an r = 2 point. These results are valid for the case when at most four particles 
have spins, although the total number of particles can be arbitrary, and are valid on the I+-saturated kernel of the domain of 
regularity. Here r = rank of Gram determinant. We take h + is and ja + h both to be integers, with jl + is ~ja + j. and 

Case I 
}. -is ~ja +j. 

Case II 
j. +j. ~h -j. 
}'-is~ja-j. 

Case III 
i. - j. ~jl - i. 

h ~j.,js ~j4' 

Number of linearly independent 4-vectors, n 

n=2 

(2is + 1)(2js + 1)(2j. + 1) 

(2i. + 1)(2js + 1)(2h + 1) 
-Hj. + j. + j. - ft)V' + is + i. -}. + 1) 

x (i. + is + j. -). + 2) 

(2j. + 1)[(2j. + 1)(2j. + 1) 
- ij.(j. + 1) - V. + js - i. -ft) 

x (j. + is + j. - it + I)] 

n=3 

(h + 1)(2j. + 1)(2js + 1)(2j. + 1) 

(h + 1)(2i. + 1)(2js + 1)(2j. + 1) 
-Hi. + is + j. - ft)(i. + is + i. -}. + 1) 

x V, + is + h - }. + 2) 

(2j. + 1)[Vl + 1)(2j. + 1)(2js + I) 
- ij.(j. + 1) - !V. + is - j. - h> 

x (j. + j. + j. - it + 1)] 
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IV. DISCRETE SYMMETRIES 

A. Identical Particles, PCT, P, T, and C 

In this section we determine the number of inde
pendent Me functions at various points on .'Jl<+). if the 
functions have definite signature under the dIscrete 
symmetry operations. The main object is to es~ablish 
the results at points where the number of Imearly 
independent momenta n is 3, but the r~nk of. the 
Gram determinant r is 2. The understandmg derIved 
from this discussion leads to the results of the follow-
ing section. . 

Invariance under peT and the connectIOn between 
spin and statistics are both consequences of the basic 
principles of S-matrix theory19 and of field theor~. 24 •• 28 

In terms of the connected parts of the S matrIX m 
canonical form, the peT identity reads 

4 

PCT: SC(Kb; Ka) = 'YjPCT II D<Ji)(C)a/'SC(Ka ; Kb), 
. i=l IX" Ii' 

IXb ; lXa a' b 

(28) 

where 'f/PCT is a phase factor. Here Ki = (ki' li)' 
with ii = (mi' ji' -qi) indicating an antiparticle. The 
spin-statistics connection states that exchanging the 
order of the momentum variables and spin com
ponents of any two identical initial or any .two iden
tical final particles of spin j changes the sIgn of the 
scattering function by (-1 )2J. 

The assumption that transition probabilities are 
invariant under a change of direction of all spatial 
components of the 4-momenta leads to the relation 

P: SC(Kb; Ka) = 'YjpSC(Kb; Ka) (29) 

in the physical region of the process t 1 + t 2 --* t 3 + t 4 • 

Here Ki = (ki' ti ), with ki = (ki
O

, -k;), and 'f/p = 
± 1, the "process intrinsic parity," is the product of the 
"particle intrinsic parities" of the particles occurring 
in the process. 29 

It is straightforward to show that if transition 
probabilities are invariant under time reversal, which 
involves exchanging initial and final states and chang
ing the sign of all three vectors, one has for physical 
points 

(30) 

where 1}T = + 1 is required for an elastic process. 
It may happen that PT is a symmetry, even if P and 

T are not. Then the peT identity (28) requires 

charge-conjugation invariance, 

C: SC(Kb; Ka) = 'YJCSC(Kb; Ka). (31) 
IXb ; lia 

The relevant symmetry relations for Me functions 
with spinor indices of the types introduced in ~4) a~d 
(6) follow easily from (28)-(31) and are glVen ~n 

Table II. If a given symmetry is valid for a certam 
physical process, it is valid for the analytically 
continued functions and, consequently, for the 
processes related by crossing.ao 

B. Functions with Definite Parity Signature 

Even when spatial inversion is not a symmetry of 
the process under consideration, one can find it 
useful to decompose the Me functions for two in
coming and two outgoing particles into parts hav.ing 
positive and negative parity signature. In the phySIcal 
region of the process t 1 + t 2 --* t3 + 14 , let us define 
the functions 

M/(Kb; Ka) = t[ MC(Kb; Ka) + E" D <i
ht1 ~ kb) . 

IX b ; ()(a IXb; ()(a b ab!<b 

(
G' k) - - ] X DUa) __ u ~C( K~: ~a) , 

rna aa!<u IXb' lXa 

(32) 

for E" = ± 1. With the aid of (A12) we find that 

which indicates that the functions defined by (32) 
have definite parity signature (see Table II). 

One may analytically continue the functions M'; 
and M!:. defined by (32) over all of ,')l<+l, and the 
following decomposition is valid at all points k on that 
domain: 

By comparing (33) and (34) with Table II, we see that 
if spatial inversion symmetry is valid with 1}p = ± 1, 
then M'; == O. 

According to the remarks in Sec. IIIB, the points 
k and k in the analytically continued relation (33) 
lie on the same L+ orbit on ,')l<+) unless they are 
r = 2, n = 3 points. If they are r = 2, n = 3 points, 
then remark H2(b) shows that they lie on two differ
ent L+ orbits on ,')l<+) having the same r = n = 2 limit 
points. It is well known that L+ covariance leads to 
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TABLE II. Effect of invariance under various discrete symmetry operations on the Me functions. 
N. = number of fermions in state Q. 

M'(K.; K.) 
Symmetry (Xb; (X. 

peT = (_1)N. lJpoTM'(K.; K.) 

p 

T 

PT 

c 

ab; tXa 
= lJpM'(Kb; K.) 

(X.a; OCb 

= (_1)N·lJ PTM'(K.; Kb) 
lXa ; rxb 

= lJeMC(Kb; Ka) 
CXt!; eta 

linear relations between the functions having the 
same parity signature at all r = n points. We will 
review this result in order to extend it to r = 2, n = 3 
points. 

Because of the D(;,l(C1 . ki/mi) matrices that act on 
the M/ functions under the parity operation defined 
by (33), it is much simpler to use the connected parts 
of the S-matrix elements to count the number of 
independent functions. The SC functions have kine
matical singularities arising from the "boost" matrices 
that relate them to the Me functions, as in (4). These 
singularities, unlike those of the MC functions, are not 
Lorentz invariant, so we can always find points on 
any orbit at which the SC functions are analytic if the 
Me functions are holomorphic.31 

By application of the proper boost matrices to (32) 
and (33), we obtain 

S±C(Kb; Ka) = i[SC(Kb; Ka) ± SC(Kb; Ka»), (35) 

where 

To see the restrictions at r = n = 3 or r = n = 2 
points on 3t, it is best to choose a point k = {kb; ka} 

M'(K.; K.) 
(Xb; eta 

= (_1)N. lJpOTMC(K.; K.) 
cia; !Xb 

tib; eta 

= (-W.lJpM'(Kb; K.) 

= (-l)N.lJpTMC(K.; Kb) 
cia; tXb 

= lJcMC(Kb; K.) 
(Xli; cia 

on a given orbit such that all spatial components are 
normal to the 2 axis; then a rotation of 7T about this 
axis carries k E.](,3 into k. Since the matrix A(ki ) in 
(All) corresponding to the Wigner rotation is equal to 
A when A is unitary and since the required rotation 
matrix for spinji is now simply the matrix D(J,l(C) in 
(AS), Eq. (3) gives us 

S:(Kb ; Ka) = E(-l)l:~-l (fi-iZ,lS:(Kb; Ka). (37) 

Equation (37) allows us to conclude that at any 
r = 3 point on the domain of regularity of the Me 
functions, disregarding possible restrictions due to 
other symmetry operations, the number of M. e 

functions whose values are independent is 
, 

N. = ! II (2j; + 1) (38) 
i~l 

if there are fermions involved in the process. On the 
other hand, the number is 

1 (II' (2· - (1)~:-1 i') N. = 2 i~l Ji + 1) + E - (39) 

if all the particles are bosons. 
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In order to obtain the restrictions at r = n = 2 
points on:R, we note that, in terms of the S." functions, 
(22) becomes 

S."(Kb ; Ka) = ° if OCI + OC2 ¢ OCa + OC4' (40) 
OCb; tXa 

Then (37) restricts the number of M." functions whose 
values are independent to exactly half the number 
allowed by (40) alone, if some of the particles. are 

fermions, and to that number plus !E( -1 )~i~l ", 
if all the particles are bosons. The number allowed 
by (40) alone has already been given in Table I. 

From remark H2(b) in Sec. III, we know that an 
r = 2, n = 3 point is related to its spatial inverse only 
by an improper Lorentz transformation. H~wever: on 
:R(+) the limit (25) must be valid for the M. functIOns 
also and we do get restrictions at r = 2, n = 3 points. 
In particular, in place of (26) we have 

M C(K . K ) = M C(K (±). K (±) 
E b' a E b , a , 

4 

for LOCi = 0, 
i=1 

(41) 

if k<±l, as defined by (23), is an r = 2, n = 3 point on 
:R(+), and k is an r = n = 2 limit point of C+k(±) of 
the form (18). 

Similarly, in place of (27) we get 

4 
M."(Kb (+); Ka (+) = ° if LOCi < 0, (42a) 

OCb; OCa 
i=1 

4 

M/(Kb
H

; KaH
) = ° if LOCi> 0, (42b) 

OCb; OCa 
;=1 

but there are no restrictions on the components not 
accounted for by (41) or (42). 

By inspection of (41), we see that at the r ~ 2, 
n = 3 point under consideration, the M. C functIOns 
satisfying Li OC i = ° are subject to the same res~ri~
tions as they are subject to at the r = n = 2 .lImlt 
point of the orbit. Therefore, the. number of mde
pendent functions with Li OCi = 0 IS the sa~e as the 
number mentioned in the sentence followmg (40). 
Adding to this the number of functions not restricted 
by either (41) or (42), we find that t~e number o~ M/ 
functions whose values are not subject to any lInear 
restriction among themselves is exactly the same at 
any r = 2, n = 3 point on :R(+) ~s t.he numb~r at any 
r = 3 point on :R-this number IS given by eIther (38) 
or (39). 

C. Restrictions in Special Cases 

Invariance of a scattering process under any discrete 
symmetry other than spatial inver~ion can r:strict t?e 
number of independent MC functIOns only m specIal 

FIG. I. Special reference frame 
used for obtaining discrete sym
metry restrictions. The 2 axis 
points out of the paper. ~I 

cases in which the point in momentum space resulting 
from the symmetry operation lies on the same 
C+ orbit as the original point. We will consider 
the restrictions for r = 3 points by working in the 
physical region of a particular C.m. system with the 
I and 3 axes orientated as in Fig. 1 and with the 2 axis 
pointing out of the paper. The restrictions thus 
obtained are easily extended to all r = 3 points on :R 
and also to the points on :R(+) with r < 3. 

For example, for a scattering process of the form 
11 + 11 -+ la + ta,the exchange symmetry for identical 
particles leads to a restriction when one simultane
ously exchanges the orders of the initial particles 
among themselves and of the final particles among 
themselves. In the reference system of Fig. 1, a 
rotation of 7T about the 2 axis carries the transformed 
momenta back into the original orientation and we 
have 

E: SC(Ka, K4 ; K1 ,K2) 

oca, oc,; tXl , tX2 

- ( 1)~:~1 (J;+a;lSC(K K' K K) - - a, 4, 1, 2' 

-OC" -OCa; -tX2, -tXt 

for 11 = 12 and 1a = 14 , (43) 

The functions for the crossed process 11 + ia-+ 
il + fa have the same number of independent com
ponents as those allowed by (43). This restriction 
could also have been obtained by applying the peT 
relation (28) in the new channel. For a process of the 
form t + t -+ t + t with t = i, the peT relation and 
the symmetry under the exchange of identical particles 
simultaneously lead to restrictions in the same channel. 
In the reference frame of Fig. 1, a rotation of 7T about 
the 3 axis carries the point on the right-hand side of 
(28) into that on the left and we obtain 

peT: SC(Ka, K4 ; K1 , K2) = SC(Ka, K,; K1 , K 2), 

~,~;~,~ -~,-~;-~,-~ 

for 11 = 12 = la = 14 = 1 = i. (44) 

Time-reversal invariance restricts the number of 
independent components only in an ela~tic two
particle process. In the reference fra~e of FIg. 1, the 
required exchange of the 4-momenta IS brought about 
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TABLE III. Number of independent ME' functions having definite signature under T and PT 
for the process tl + t2 -+ tl + t 2. These results hold at any point on the l+-saturated kernel of 
the domain of regularity where there are three linearly independent 4-momenta. Exceptional 
cases in which exchange symmetry or PTC (or both) must give a restriction are: (1) II = f.; 
(2) II = I.; (3) both tl = £1 and t. = ' •. These exceptions are either given directly by the 

processes in Tables IV and V or related to them through crossing. 

(a) If at least one of the incoming particles is a fermion 

e=P T PT Number of terms 

+ + + t(2j. + 1)(2h + 1)(4M. + 2jl + 2h + 3) 
+ t(2j. + 1)(2h + 1)(4j.h + 2j. + 2h - I) 

+ t(2j. + 1)2(2h + 1)2 
+ t(2j. + 1)2(2j2 + 1)2 

(b) If both particles are bosons 

e=P T PT Number of terms 

+ + + H(2jl + 1)(2j. + 1)(4j.h + 2j. + 2j. + 3) + I] 
+ H<2jl + 1)(2h + 1)(4M. + 2jl + 2h - I) + 11 

+ H(2jl + 1)2(2j. + 1)2 - 1] 
+ H(2j. + 1)2(2j. + 1)2 - 1] 

by a rotation of 1T about the 1 axis and (30) becomes, 
withrJT=I, 

symmetry that can give a restriction. In Table IV we 
have allowed only those terms satisfying (_1)2(11+i3 ) = 
1 when taking (43) into account. This is because the 
additive quantum numbers independent of the 
Lorentz group must be the same for 11 and ta in a 
process of the form 11 + 11 -+- 1a + 1a, and in nature 
all strongly interacting particles with half odd-integer 
spin apparently have odd baryon number, while those 
with integer spin have even baryon number. 

T: SC(Ka,K4 ;K I ,K2) 

OCa , OC4 ;OCI , OC2 

= (_lYl+a2-a3-a,sc(Ka, K 4 ; K I , K 2), 

OCI , OC2; lis, 1i4 

for tl = t3 and t2 = t4 . (45) 

Equations (37) and (43)-(45) are sufficient to find 
all possible restrictions at r = 3 points on :R. In 
Tables III, IV, and V we have listed the number 
of independent Me" functions having definite signature 
under the relevant symmetry operations for those cases 
in which spatial inversion is not the only possible 

Of course, when spatial inversion is a symmetry for 
all processes in nature, only terms with E = P = + 1 
are nonvanishing in any of the tables,29 and when time 
reversal is a symmetry for the elastic processes in 
Tables III and V, only terms with T = + I are 
nonvanishing. If neither P nor T is a symmetry, but 

TABLE IV. Number of independent ME' functions for the process tl + fl -+ f3 + 13 with fl -F- t3· 
These results hold at any point on the h-saturated kernel of the domain of regularity where 
there are three linearly independent 4-momenta. Since the additive quantum numbers that 
are independent of the Lorentz group must be the same for t 1 and t 3, such a process apparently 
occurs in nature only when fl and fa are both fermions or both bosons. The table is valid even 

e=P 

+ 

e=P 

+ 

when fl = fl. 

(a) When particles tl and fa are fermions 

Number of terms 

H2j. + 1)(2js + 1)(4j.j. + 2j. + 2j. + 3) 
t(2h + 1)2(2ja + 1)2 

(b) When tl and f. are bosons 

Number of ternlS 
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TABLE V. Number of independent M; functions having definite signature under T and PT for 
the process t + t ---+ t + t. These results hold at any point on the I+-saturated kernel of the 

domain of regularity where there are three linearly independent 4-momenta. 

(a) When particle t is a fermion 

.=P 

+ 
+ 

T 

+ 
+ 

PT 

+ 

+ 

Number of terms 

!(2j + 1)(8j3 + 12/ + 18j + 7) 
H2j + 1)(8j" + 12/ + 2j - 1) 
J,,(2j + 1)4 
!(2j + 1)4 

(b) When particle t is a boson. If, in addition, t = i, then only terms with 
PT = + are alIowed by the peT theorem 

.=p 

+ 
+ 

T 

+ 

+ 

PT 

+ 

+ 

PT is, then only terms with PT = + I are nonvanish
ing in Tables III and V.32 

Any process not accounted for in Tables III, IV, 
and V for which a discrete symmetry other than 
spatial inversion can restrict the number of inde
pendent Me functions is related through crossing to 
one in the table. For example, in the process tl + [1 --* 

t2 + [2 charge-conjugation invariance can yield a 
restriction, but this is exactly the same restriction given 
by PT symmetry for the process tl + t2 --* tl + t2. 

Although Tables III, IV, and V were derived for 
r = 3 points, they also tell us how many independent 
M. e functions having the given symmetry properties 
there are at r = 2, n = 3 points on :R(+). We have 
seen at the end of Part B of this section that L+ co
variance allows the number of independent M." 
functions to be the same at an r = 2, n = 3 point on 
:R(+) as at the r = 3 points, the latter of which form a 
dense subdomain of :R(+). 

The tables derived from the considerations of this 
section are important for the application of the criteria 
to be presented in the next one. In checking any set of 
covariant polynomials to see whether they give 
invariant amplitudes free of kinematical singularities, 
it is useful to know in advance how many of any 
discrete symmetry signature one should have. 

V. INVARIANT AMPLITUDES 

A. Extension of the Theorem of Hepp and Williams 

We have been considering the Me functions for two 
incoming and two outgoing particles with spin as 
functions of their 4-momenta on the mass shell. The 
above discussion of kinematical constraints on func
tions having definite parity signature, together with a 

Number of terms 

2/ + 4j3 + 6p + 4j + 1 
2j"(j + 1)2 
j(j + 1)(2j" + 2j + 1) 
j(j + 1)(2/ + 2j + 1) 

result of Hepp and Williams, will enable us to describe 
the analytic properties in terms of L+ invariants. 
Because of the mass shell conditions and 4-momenta 
conservation, one can form only two independent L+ 
invariants. These can be taken to be two of the three 
linearly related Mandelstam invariants: 

s = (kl + k2)2, t = (kl - k3)2, 

and 

Let us first consider a process for which all four 
particles are spinless-that is, one for which the Me 
function is L+ invariant, 

(46) 

for any point k on the domain of regularity :R. 
According to a theorem of Heppl and Williams5, 

any such function can be expressed as a holomorphic 
function of the independent L+ invariants on the image 
of the 1+ -saturated kernel elLa (+) of each sheet '\.La C 

:R: 
Me(K) = A(s(k), t(k» == A(s, t). (47) 

Thus (47) defines an analytic function A over the 
invariants sand t. The domain of regularity of this 
function is the image of :R(+).33 

Actually the restriction to the image of the 1+
saturated kernel is not necessary-the domain of 
regularity of the function A defined by (47) is the 
image of the full domain of regularity of Me. This 
extension of the result of Hepp and Williams arises 
from the fact that :R is automatically 1+ saturated; 
i.e., :R(+) = :R. 

Lemma 1: Let the domain of regularity of the 
function F be a domain :R(F) lying over .](,3' Suppose 
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the function F is C+ invariant on :R(F). Then :R(F) is 
1+ saturated, i.e., the r = n limit points of every r '¢ n 
orbit on :R(F) also lie on :R(F). 

The proof of the above lemma, due to Stapp and 
this author, is given in Appendix B. 

B. Standard Covariants 

We would like to generalize the preceding con
siderations of this section to the cases in which one or 
more of the four particles has spin. That is, we would 
like to be able to express the M. e functions for any 
process with two incoming and two outgoing particles 
in te~ms of invariant functions that are holomorphic 
in the C+ invariants sand t everywhere on the image 
of the subset 'l1a H) of each C+ -invariant sheet 'li'a C 

:R. The spin dependence and, consequently, all the 
kinematical properties of the M. e functions will be 
accounted for by polynomials in the 4-momenta 
referred to as "standard covariants." First we will 
precisely define the latter. 

Definition: Consider the Me functions for a scatter
ing process involving two incoming particles of spins 
jl and j2 and two outgoing particles of spins ja and j4 . 
A set of spin or functions Y+1(g)(k),forg = 1,'" ,N+, 
and L 1(g)(k), for g = 1,'" ,N_, where N+ + N_ = 

n:=l (2ji + 1), is said to be a set of standard co
variants for this process (and the processes related by 
crossing) if they satisfy the following five properties: 

SCI. They are polynomials in the four momenta for 
the process, subject to the mass shell and 4-momentum 
conservation constraints. (They are therefore holo
morphic everywhere.) 

SC2. They are C+ covariant; i.e., 

y"(g)(A(A, B)k) = D<ib)(A)abab'D<ia)(A)a.aa'Y.,(g)(k). (48) 

SC3. They have definite signature under the spatial 
inversion operation: 

(49) 

SC4. The functions of each of the two parity 
signatures are separately linearly independent at all 
n = 3 points. That is, if we form the functions 

B. 
r.(k) = ~ y/g)Y.,(g)(k), (50) 
!Xb;!Xa g=1 !Xb; !Xa 

where the y. (g) are real or complex numbers, then, 
at any n = 3 point k = {kb; ka}, the only solution to 
the equations 

r.(k) = 0 
!Xb; !Xa 

for all values of {!Xb; O(a} is y/g) = 0, for all g = 
1,"', N •. 

SC5. If the number of Me functions whose values 
are independent is restricted by any discrete symmetry 
other than parity, then each of the spinor functions 
y/g) (k) has definite signature + 1 or -1 under this 
operation (the form of the symmetry operation is the 
same as that for the Me functions in Table II). 

The above properties of the standard covariants 
lead to the following lemma, the proof of which is 
given in Appendix C: 

Lemma 2: Consider a set of standard covariants for 
the Me functions describing a process with two in
coming and two outgoing particles. Then: 

Ll. At any r = 3 point, the standard covariants of 
parity signature + 1 are linearly independent of those 
of parity signature -1. 

L2. For each value of E, N, = N, as given by (38) 
if there are some fermions involved in the process, or 
N. = N. as given by (39) if all the particles are bosons. 

U. In those cases in which property SC5 holds, 
the number of standard covariants having a given 
signature under any of the applicable symmetry 
operations is in agreement with the number in Tables 
III, IV, and V. 

The choice of a set of standard covariants for any 
process is by no means unique. If we have found a set 
y.(g)(k), for g = 1, ... ,No satisfying the required 
properties, and if we can write 

N. 
Y.,(g)(k) = ~ i/o'(s, t) Y/o')(k), (51) 

g'=1 

such that the coefficients .r.gg
' (s, t) are globally holo

morphic functions of the Mandelstam invariants with 
det «j.gO'(s, t» nowhere zero, then the y.(g)(k) also 
form a set of standard covariants. 

C. Invariant Amplitudes for Scattering Functions 
with Spin 

We are now ready to consider the possibility of 
expanding the M: functions for a given process in 
terms of standard covariants having the same discrete 
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symmetry signatures, using the properties of the stand
ard covariants in the definition and lemma of Part B 
of this section. Our results are expressed by the 
following theorem. 

Theorem: Consider the Me functions describing a 
process with two incoming particles and two outgoing 
particles. On the 1+ -saturated kernel :R(+) of the 
domain of regularity :R of the Me functions, one may 
write the following global decompositions: 

N€ 
Me - ~ A (g)y (g) 

E" -.(,. E E, (52) 
g=1 

where the y,(g) are any set of standard covariants 
for the process. The "invariant amplitudes" A}g), for 
g = 1, ... , N" are holomorphic functions of the 
Mandelstam invariants sand t on the image of the 
I+-sllturated kernel ll1a (+) of each L+-invariant sheet 
'\La F :R. 

If the M,c functions for a particular value of E are 
identically zero, the above result is trivial with 
vanishing A.(g). In our proof of the theorem for 
nontrivial cases we will first completely ignore those 
cases in which the number of independent M/
function components is less than the number in (38) 
or (39) at n = 3 points on :R(+). The necessary 
modifications for the exceptional cases will be easy to 
make. 

For our proof we will first try writing on the subset 
'l1a (+) of a particular sheet 'l1a c :R 

N. 
M/(K) = IA.(g)(k)y'(g)(k), (53) 

OC b ; OCa g=1 (Xb; OCa 

which corresponds to (52), except that we regard the 
invariant amplitudes A.Ig) as functions of the 4-
momenta for the present. We will show that (53) is 
invertible; that is, we will solve for the amplitudes 
A/g) in terms of the M." functions and show that this 
does not introduce any singularities not present in 
the M." functions themselves. Finally, the theorem of 
Hepp and Williams will allow us to express the 
analytic properties of the invariant amplitudes in 
terms of t+ invariants. Recall that, according to the 
last paragraph, we are ignoring the exceptional cases 
for the present. 

Consider the scalars 

OC b ; /Xu 

'Y!¥/)(k) = y',(g')(k)y€(g)(k). (54) 

Each of the above invariant functions is holomorphic 

everywhere on J(,3 and the determinant formed from 
them, det (1I!~: .. g», cannot vanish at any r = 3 
point. The only way the determinant at such a point 
could vanish would be for some of the standard 
covariants to be linearly dependent, contradicting 
statements SC4 and Ll. Since the standard covariants 
are not all linearly independent at an r = 2 point, 
det (1I!~:,g» must vanish at such a point. 

The determinant just introduced consists of four 
blocks, the upper left-hand one having components 
of the form 1I~1'::i, the lower right-hand one 
1f<~~',~h the upper right-hand one 1I~;:~L and 
the lower left-hand one 1I~al. However, it 
follows from (49) that 1I(r:~) == 0, since one has an 
invariant function of three independent 4-vectors that 
has negative signature under spatial inversion, and 
such a function vanishes identically. Consequently, 
the determinant is factorizable: 

det (1I«(,g» = [det (,y(g',g, )][det (1I(Y"o»)] (55) 
, " +1,+1 -1,-1 , 

and neither det (1I~t~l) nor det (1I~':~l) can vanish at 
any r = 3 point. Since (55) must vanish at r = 2 points, 
we must have 

where k1' k2' and k3 are any three of the momenta 
and N is some integer. 

The L+-invariant functions 

/Xb; /Xa 

uK,!~,~(k) = M .. e(k)y/g)(k), g = 1, ... , N., 
OCb; OCa 

(56) 

are holomorphic everywhere on the particular domain 
'\La(+) under consideration with JIt,;~~. == 0. From 
(53), (54), and (56) we obtain the set of equations 

~ A (g"(k)1I(o'·g'(k) - JIt,(o)(k) 
~ E E,E - f,E , g=l,···,N •. 
g' 

(57) 

At least at r = 3 points, where det (11(0;::') cannot 
vanish, (57) is soluble for the invariant functions 
A/g) in terms of the JIt,!.gj. The solution of (57) has 
the form 

A;/g'(k) = N 1),(g'(k) ,g = 1, ... , N., (58) 
G (kl' k2' k3) 

where each 1),(g) is some combination of the 1I!g:·g, 
and the JIt,~~~. . 

The numerator 1).(U) on the right-hand side of (58) is 
holomorphic on the given domain 'l1a (+). The only 
possible singularities of the invariant amplitudes on the 
left-hand side of (58) on this domain Ll1a (+J are poles 
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at points where the rank of the Gram determinant 
is less than three. 

Let us look at (53) once more. We have already 
seen that the invariant amplitudes on the right-hand 
side of the equation are holomorphic on the image in 
J(,3 of the r = 3 points on the domain '1La (+). Since 
these r = 3 points from a dense subdomain of <11,,(+), 
as we approach any r < 3 point on '1La (+) the limit 
of the right-hand side of (53) must exist and be equal 
to the value of the left-hand side at the given point. 
If the limit point is an r = 2, n = 3 point, the stand
ard covariants are all linearly independent at the point 
and there can be no cancelling singularities in the 
invariant amplitudes; i.e., the limit at such a point 
must exist for each invariant amplitude in (58) 
separately and not just for the right-hand side of (53) 
as a whole. 

The above considerations show that there exists 
some neighborhood of each r = 2, n = 3 point on the 
domain <LLa (+) under consideration such that b.'Y) in 
(58) has the form b.(g)(k) = X.'Y)(k)GN , where X/g) is 
holomorphic in the given neighborhood. From (58), 
A.(g)(k) ;:;= X/g)(k) is holomorphic in that neighbor
hood. 

The L+-invariant sheets \\>hose union is :R can be 
chosen to overlap, and the particular sheet 'LLa for 
which the decomposition (53) was carried out was 
arbitrary. Thus, the above procedure defines a unique 
set of functions A.(g) , for g = 1, ... , N •. The domain 
of regularity of each function A.(g) is a domain :R(A/g» 
over J(,3, and A.(g) is L+ invariant on :R(A.(g». We have 
seen that each domain :R(A.(g» contains all n = 3 
points on ;R H). Because of Lemma 1 each domain 
:R(A.(g» also contains all r = n = 2 points on :R. 

Because of the theorem of Hepp and Williams, we 
may express each invariant amplitude as a function of 
L+ invariants on the image of the 1+ -saturated kernel 
'1La (+) of each sheet '1La c :R: 

A.'g)(k) = A/g)(s(k), t(k») == A.'g)(s, t), 

g = 1, ... , N., (59) 

with the possible exception of r = 1 points on the 
domain '1La(+). But, at r = 1 points, k i • k j = ±mimj 

for all values of i and j. Consequently, such points are 
isolated in the space of the L+ invariants. It is well 
known that an analytic function of several complex 
variables cannot have isolated singularities. 34 

Equation (59) therefore defines functions A.(g), 
each of whose domain of regularity is a domain over 
the space of the Mandelstam invariants sand t. This 
domain is the image of all points on :R(+), so the proof 
of the theorem is completed-for those cases in which 

the number of independent M/ functions is given by 
(38) or (39).35 

In the exceptional cases in which properties SC5 
and L3 are applicable, the scalars 1J;~;.g) in (54) formed 
from standard covariants that have opposite signa
tures under any of the applicable discrete sym
metries vanish identically. Then the determinant in 
(55) splits up further; that is, det (1J~~;.g», for each 
value of E, can itself be written as a product of smaller 
determinants. Furthermore, when the M/ functions 
have definite signature under the symmetries in 
question, the scalars in (56) involving standard 
covariants with different symmetry properties also 
vanish identically. The solution of (53) proceeds very 
much as before, except that now only the standard 
covariants having the correct symmetry properties 
need be used in the expansion, and the set of equations 
to be solved is of smaller order. Since the standard 
covariants continue to be linearly independent at 
r = 2, n = 3 points, which was the crucial factor in 
our previous proof, we have no singularities in the 
invariant amplitudes at r < 3 points on ;)1(+). 

We have seen in Sec. IVB that l+ covariance 
requires the various M.e functions to satisfy certain 
linear relations at all points on :R<+). Because of the 
properties of the standard co variants , the decom
position on the right-hand side of (52) automatically 
satisfies these relations. Therefore, there is no point 
at which some linear combination of the invariant 
amplitudes must vanish in order for this decomposi
tion to satisfy the required kinematical constraints
i.e., the invariant amplitudes are free of "kinematical 
zeros. " 

VI. SUMMARY AND DISCUSSION 

The main results of this paper are as follows. 

(a) If the domain of regularity ;It of the scattering 
functions Me for a 2 ->- 2 process contains a point at 
which only two of the external 4-momenta are linearly 
independent then, as is well known, ;It contains also 
points having the same scalar invariants but with 
three linearly independent momenta. At any of these 
points C+ covariance requires the number of linearly 
independent components of Me to be less than the 
dimensionality of the spin space. 

(b) Let ;f be the parity operation for the Me 
functions and let M/ = f(Me + E;f Me). The number 
of linearly independent components of the functions 
M/ is the same at all points on their domain of 
regularity at which there are three linearly independent 
momenta. This result continues to hold if one imposes 
additional discrete symmetry requirements. 
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(c) If one expresses the individual functions M+c 
and M_c as sums of covariant polynomials times 
invariant functions, then these invariant functions 
will be holomorphic in the Mandelstam invariants 
sand t except at the image of the singularities in 4-
momenta space of the corresponding ME" functions, 
provided (i) the total number of basis polynomials 
equals the dimensionality of the spin space and (ii) 
the basis polynomials for each of the two parity 
signatures are separately linearly independent at all 
points at which the number of linearly independent 
momenta is three. 

Our result allows the awkward comparison to the 
basis sets of Hepp and Williams to be avoided. It 
reduces the problem to the essential one of the linear 
independence properties of the proposed basis set. 

In another paper we intend to discuss the problem 
of checking the linear independence of the poly
nomials of each parity signature. Several theorems 
that greatly simplify the practical procedure will be 
given, together with many practical applications. 
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APPENDIX A: SPIN OR CALCULUS AND 
LORENTZ TRANSFORMATIONS 

This appendix serves to clarify the notation of the 
main part of the paper and other sources should be 
consulted for more complete details.4.5.14-17.24.36 We 
use the superscript T to indicate the transpose of any 
matrix and t to indicate the Hermitian conjugate. The 
Pauli matrices are 

0'0 = (~ ~), 

a2 = (~ ~i), (AI) 

and the convention for any real or complex 4-vector z 
is that zl' = (ZO, z). 

Any two matrices A and BE SL(2, C), the group of 
two-dimensional unimodular matrices, define a 

A(A, B) EL+, 

the group of proper complex Lorentz transformations, 
through the relation 

a . A(A, B)z = Aa . ZBT. (A2) 

In particular, if B = A*, A(A, A*) E Lt is a real 
proper orthochronous Lorentz transformation. 

The full complex Lorentz group is L = L+ U C, 
where any AI E L_ is an improper Lorentz transforma
tion with det AI = -1. In contrast to the real 
Lorentz group, which has four components because 
the unit matrix IE Lt and the simultaneous reflection 
of all four coordinate axes - I E L~ are not related by 
any continuous transformation, the complex Lorentz 
group has only two components, L+ and C, because 
I and - I are connected by a continuous path in L+ . 

By the usual methods, one obtains a 2j + 1 by 
~; + 1 matrix D(i)(A) corresponding to any A E 

SL(2, C). There always exist real parameters <J> and A 
such that one can write D(i)(A) = D(il(H)D(j)(V) with 

D(j)(V) = exp (-i<J> • J(j), 

DU)(H) = exp (A' J(j». 

The JU) are the familiar generators of rotations. 

(A3a) 

(A3b) 

The generalization of (A2) to arbitrary integer or 
half-odd integer j is then 

DU)(a' A(A, B)z) = D(f)(A)Dw(a' z)D(j)(BT ), 

or, more specifically, 

D<n(a . A(A, B)z)a~ 

(A4a) 

= D(i)(A)/ D(j)(B)/ D(i\a' z)a'~" (A4b) 

which serves to clarify the meaning of lower dotted 
and lower undotted spinor indices. In particular, for 
real Lorentz transformations a dotted spinor index 
transforms like the complex conjugate of an undotted 
one. 

The matrix D(j)(C) is defined by 

DW(C-1yP = D(i)(C-l)'i~ = (_l)i-ab<l·-P, (ASa) 

D<i)(C)"p = D(j)(C)Il~ = (_1)2i D(j)(C-1)"p. (ASb) 

An important property is 

D(j)(C)D(i)(A)D(j)(C-1) = D(j)(AT -
1
). (A6) 

D(i)(C-l), acting from the left on any lower spinor 
index, turns it into an upper spinor index. Upper 
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undotted spinor indices are therefore acted on from 
the left by D(J)(AT -

1
) and upper dotted ones are acted 

on from the left by D(j)(BT -
1
). Contraction of an 

upper undotted index with a lower undotted one, or 
of the corresponding dotted indices with each other, 
yields a scalar. 

In addition to (A6) one has 

D(i)(C)D(i)(a'l'· z)D<il(C- I ) = D{f)(a· z), (A7) 

where aJl = aJl = (ao, -0'). 
Let k be any real 4-vector on the mass shell; that is, 

k 2 = m2 , where m ~ 0 is the mass of the particle under 
consideration. Its rest-frame value is k = (m, 0) and 
the "boost" L(k) is the Hermitian matrix in L~_ defined 
by 

k = L(k)k. (AS) 

One may write L(k) = A($(k), $*(k», where the 
Hermitian matrix $(k) E SL(2, C) is given by 

$(k) = (a' k/mY~ 
= [2m(m + kO)]-~[m + kO + 0' • k]. (A9) 

Corresponding to any A E L~ and any real 4-
momentum k on the mass shell, one rna) define the 
"Wigner rotation" 

R(k, A) = L-l(Ak)AL(k), (AlO) 

which is well known to those familiar with the unitary 
representations of the inhomogeneous Lorentz group. 
One may write R(k, A) = A(A(k), A(k)*), where 
A(k) E SU(2) is given by 

A(k) = $-l(Ak)A$(k). (All) 

The following relation is valid for any complex 
value of k on the mass shell: 

D(i)(a' k/m)D(il(a· kim) = I. (Al2) 

APPENDIX B: PROOF OF LEMMA 1 

The details given here are due to Stapp and 
this author. Some definitions we make use of are 
the following. 

J(,l: The points k = {kl' ... ,kl+1} in complex 4-
vector space subject to the conditions k;· k; = 
(mi)2 > 0; i = 1,'" ,I + 1, and ~::!i €;ki = 0, 
where €i = ±1. 

1+: The mapping that takes sets in k space to their 
images S(k) in the space of the C+ invariants; i.e., 
S(k) = I+(k) = (l(k), P(k», where J(k) is the set of 
all inner products formed from the k i and P(k) is the 
set of all pseudoscalars formed from them. 

.A(,I+: The space of C+ invariants corresponding to 
the points of J(,I; i.e., .A(,l+ == I+(J(,I)' 

To prove Lemma 1, we need the following lemma. 

Williams' lemma37 (open mappings from J(,a to 
.;1(,3+): The 1+ image of a neighborhood of a point 
k E J(,3 is a neighborhood of S(k) = I+(k) in .;1(,3+; 

i.e., the map 1+: J(,3 -+.;1(,3+ is open. 

Proof of Lemma 1: According to remark Hl(b) 
in Sec. IIIB, there is a one-to-one mapping 
between orbits in J\,3 and points S E .A(,3+ == I+(J(,3)' 
Thus :reS) defined by :r(S(k» = F(k) is uniquely 
defined for all r = 3 points k lying on 9t(F). The set of 
points r ~ 2 is a set of codimension 1 in invariant 
space, since it is defined by G(k) = G(S(k» == 
G(S) = 0. If any r = n point k lies on :R(F) , then 
:reS) == :r(S(k» is bounded at S = S(k), and in fact 
in a full neighborhood of S by virtue of Williams' 
lemma on open mappings. But if :reS) is single valued 

on G ~ 0 and bounded in a neighborhood of S, then 

it is holomorphic at 8.38 

Since :reS) is holomorphic at S, every r = n limit 
point of the orbit C+k and every other r ~ n orbit 
having these limit points lies on :R(F). This is because 
any such point whose image in J\,3 is k satisfies S(k) = 
S and at any such point F(k) = :r(S(k» is a holo
morphic function of a holomorphic function. Of 
course, the value of F(k) at all the above points with 
S(k) = S must be defined to be :reS). QED 

Lemma 1 cannot be extended to t+-invariant 
functions over .](,1 with I > 3. That is, the domain of 
regularity :R(H) of an t+-invariaht function Hover J\,l 

with I > 3 does not necessarily contain the r = n limit 
points of an r ~ n orbit lying on :R(H). This is because 
Williams' lemma on open mappings is not valid for 
neighborhoods of r ~ n points in .](,1 with I > 3.37 

APPENDIX C: PROOF OF LEMMA 2 

To prove statement L1 of the lemma, we will first 
assume that at a given r = 3 point the standard 
covariants of signature + 1 are not linearly independ
ent of those of signature -1, and we will then show 
that this assumption is not consistent with property 
SC4 of the standard covariants. That is, we assume 
that for some r = 3 point k there exists a set of non
zero y+'s and y_'s such that, for the functions defined 
by (50), 

r +(k) + r _(k) = 0, (Cl) 
!Xb; !Xa !Xb; !Xa 
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But, since any r = 3 point k lies on the same 1:+" we require that standard covariants have definite 
orbit as the point k obtained by spatial inversion, there signature under the simultaneous exchanges 
exists some Ak E SL(2, C) such that (48) and (50) give 

r.(k) = D(;b)(Ak)abab'D(;a)(Ak)a.aa'r.(k). (C2) and 
~b;~a ~~;~~ 

After substituting (C2) into (el) and multiplying each 
spinor index in the result from the left by D(;;)(Ak-l), 
we get 

r+(k) + r_(k) = O. (C3) 

Thus, if (el) is valid for all {~b; ~a} at any r = 3 point, 
(e3) is also true. 

Because of (49) and (50), 

If we multiply each spinor index in (C3) from the left 
by D(i;)(a . ki/mi) and then make use of (e4), we get 

l\(k) - r_(k) = O. (C5) 

The consistency of (el) and (e5) requires that 

r.(k) = 0, (C6) 

for both € = + 1 and € = -1, for all choices of 
{~b; ~a}' But, as mentioned after (50) in property SC4, 
the linear independence of the standard covariants 
of the same parity signature at any n = 3 point means 
that (C6) cannot be true there for nonzero r. (g). 

Consequently, (CI) cannot be true and statement Ll 
of the lemma is valid.39 

We now consider statement L2 of the lemma. First 
note that each component 

y. (g)(k), 

for a fixed value of g, but different values of {lXb; ~a}, 
is actually a different function. However, as was the 
case for the M: functions in Sec. IV, (49) means that 
at most N. of their values, where N. is given by (38) 
or (39), whichever is appropriate, can actually be 
chosen independently at any n = 3 point. Thus, the 
number of standard covariants y. (g) (k) that are linearly 
independent for a given € cannot be greater than N.; 
i.e., N. ~ N •. Since N+ + N_ = rr:~l (2j; + 1) = 
N+ + N_, one must have N. = N •. 

Finally, consider statement L3 of the lemma. If, 
for example, m1 = ma, h = ja, m 2 = m4 , andj2 = h, 

which is the same as the PT operation for the Me 
functions in Table II. Then the same considerations 
that led to Table III tell us how many linearly inde
pendent covariants at most can have a particular 
signature under this operation, and considerations 
such as those in the proof of L2 show that this equals 
the actual number of such standard covariants. Note 
that, by choosing our co variants to have definite PT 
signature, we automatically assure that they have 
definite signature under T. The above is easily extended 
to the case m1 = m2,jl = j2' ma = m4, and ja = h, 
when the covariants are chosen to have definite 
signature under the simultaneous exchanges (k1 , IXI) +-+ 
(k2 , ~2) and (ka, lXa) +-+ (k4 , ~4)' and to the case of all 
equal masses, when definite signatures under both 
types of exchanges mentioned in this paragraph are 
chosen. 
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The model independent components of current-stress tensor equal time commutators are derived 
for arbitrary spin 0 and 1 systems. 

I. INTRODUCTION 

Equal time commutators (ETC) of currents with 
stress tensor components have been discussed in 
connection with the structure of current-current 
ETC.1 •2•3 As expected physically from their significance 
as local generators, some of their components will be 
model independent. In this article we shall derive 
these for systems of spin 0 and I by considering the 
response to variations of external vector and gravita
tional fields. We shall obtain the following model 
independent ETC between the conserved electromag
netic (or Yang-Mills) current and the symmetric 
stress tensor4: 

if/ex, t), TOO(x ', t)] = 0i[/(X, t)!53(x - x')], (ia) 

if/ex, t), TOi(X', t)] = 0i[/(X, tW(x - x')], (lb) 

if/ex, t), TOO(x ' , t)] = -lex, t)a~!53(x - x') 

- aol(x, t)!53(x - x'). (ic) 

(These equations obey the consistency requirement 
[apt, TOO'] = 0.) We start from the following general 
form of the action in the presence of an external 
gravitational field, valid' for systems of spin 0 and I: 

I = J (~ 7Ta¢a + Neg(,p, 7T, gil) 

+ 3gil Nie~(,p, 7T, gil») d4x. (2) 

Here (7Ta , ,pa) represent the canonical variables, e~ 
are functions of 7Ta, ,pa, and gil only while N == 
( _gOO)-!, Ni == gOi' and 3gii is the matrix inverse of 
gij' This form is known6 to yield the model-inde-
pendent ETC for [roo, roo'] (Schwinger-Dirac condi
tion) as well as those of [ro", TOv

'], We neglect 
operator ordering and other quantum problems such 
as higher Schwinger terms,7 as the model independent 
parts we seek are already present at the classical level. 
While fermion systems do not take the form in Eq. 

II. CURRENT-STRESS TENSOR COMMUTATORS 

The usual first-order action for low spin fields in 
flat space has the well-known form 

in terms of the unconstrained canonical degrees of 
freedom (7Ta, ,pa), with Je independent of time deriva
tives for general interactions (including derivative 
coupling). 

With minimal coupling to gravitation, the generally 
covariant form of Eq. (2) emerges with an appropriate 
choice of transformation behavior of (7Ta, ,pa). The 
crucial point is that this form fixes the explicit depend
ence on go" to be through the linear (N, N i ) factors. 
This is a general feature of lower spin and no longer 
holds for higher spin fields, where elimination of con
strained variables introduces further gp.v dependence, 
which in fact produces grave consistency problems 
there.9 Likewise we note that the time derivative 
enters only in the kinetic 7T¢ term. 

To derive the desired commutators, we use the 
definitions of the current and stress tensor as the 
response of a system to variations of external vector 
and metric sources: 

!5A I = frM"d4x, (3a) 

or, in terms of matrix elements, 

!5(a I b) p. 
-- = i (al j (x) Ib), 
M,,(x) 

(3b) 

(4a) 

(4b) 

(2), it may be shown7•8 that they also satisfy Eq. (1). Second mixed variations, which are independent of 

631 
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order, then read 

bAbg<a I b) = bgbA<a I b) 

= ~ II d
4
xd

4
x'bAa(x)bg".(x') 

X <al (bTI"l'(X') + i[TI"l'(x')f(x)]+) Ib) 
Mix) 

= iII d4xd4x'bAix)bg".(x') 

X (al (br(x) +.!. [t(X)'b"l'(X')]+) Ib), 
bg".(x') 2 

(5) 
so that the reciprocity relation 

holds. 

t5r(x) bTI"V(x') 
2 = ---'--" 

t5g"ix') Ma(x) 
(6) 

We consider now the general forms of the desired 
ETC implied by gauge invariance of the theory and 
conservation of the corresponding current.10 Both 
still hold in the presence of g"l'(X) , since the quantity 
o"jI'(x) is a general coordinate scalar when r is a 
vector density. We take in Eq. (5) the special case 
t5Aa = oaA(x), for which the left-hand side then 
vanishes, and integrate by parts on oa to obtain the 
flat space relationll 

i[/(x), T"l'(x')]t5(xO - xO') = -20a[ (W(x) ] (7) 
(jg".(x') ~ 

since the gauge equation holds for arbitrary (jg"l" 
We now apply the general result, Eq. (7), to the 

action given by Eq. (2) in the presence of an external 
vector field A", where we shall set A" = 0 and g"l' = 
'YJ"l' after varying. For minimal coupling it is clear that, 
since 00 only appears in the metric-independent 
kinetic term, 1TOO~' jO -- 1T~ is metric independent. 
Thus t5jOji5g"l' == 0, in agreement with time locality 
requirements, for otherwise the terms 0o «(jjo/r5g;l') 
would involve 0or5(XO - xO'), inconsistent with the 
time locality of the left-hand side of Eq. (7). Thus, 
we have the stronger form 

i[/(x), Pl'(x')]r5(XO - xO') = -20i[ (j/(x) J. (8) 
bg".(x') ~ 

The dependence of l on go" which we now require 
may also be given quite explicitly. Differentiating Eq. 
(2) with respect to Ai gives12 

·i =f(N' (jog' + 3 ZmN' bO~)d4X'. 
) M. g Z r5A. 

t t 

For the b/bgoo derivative, we find (always at flat space) 
that 

(jj~ I = _t(jOg') = _t(j4(X - x')/(x)I~, (9) 
15 goo ~ r5Ai ~ 

where the last equality follows from the previous 
equation at g = 'YJ. Likewise we may obtain 

t5/ I = !r5kz (t50f ) . 
15 gOk ~ r5Ai q 

To evaluate r50?, /r5A i , we recall that, at flat space where 
07 = TO i , the momentum or spatial translation den
sity always has the simple form (for A" = 0) 

TOz = - I 1TaOI~a + OkDkz, (10) 
a 

where Dk
Z is a neutral function of (1T, ~) and does not 

involve derivatives. Now, in the presence of A", the 
divergence term does not contribute to r5Toi/t5A f since 
it is neutral {okDki does not become (Ok - ieAk)Dki 
and there is no possible ambiguity involving 

[(0" - ieA,,), (ol' - ieAv)] ,....., F"l' 

since D has no derivatives}. The only contribution 
comes from the 1TO~ part, which yields 

r5To' I ( 15/ ) --2-
r5Ai r5goz q 

= ie 2 7Ta~ar5iZr54(x - x') 

= -t5at54(x - x')/(x). (11) 

Insertion of Eqs. (9) and (11) into (8) now yields the 
first two of our results, (la) and (I b). 

The ETC's[jO, Til'] are not model independent; 
thus, r5jdr5gk1 involves the explicit gkl dependence of 
og, namely 

15 r50g r5Tkl 
--,,-,--
r5gk1 r5Ai r5Ai' 

which depends on any gradient coupling present. 
As for the remaining ETC [/' T"v], only [/' roo] 

is model independent. Using the Jacobi identity on 
[MOi, TOo, jO] in terms of the symmetric pl' yields 
V, TOO] in terms of the (jO, TO"] ETC, and the result 
is Eq. (Ic). Note that, in this process, the symmetric 
T"l' must be used (or else MOi is not the Lorentz 
generator). It is thus essential to have the [jO, TO"] 
ETC for the symmetric rather than the canonical 
stress tensor in order to derive13 Eq. (Ic). 

Finally, we remark that our results follow equally 
well for, say, Yang-Mills currents. 
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We present here exact analytic results for random walks on one-dimensional lattices with nonnearest 
neighbor transitions. After deriving the generating function for such lattices with and without boundaries, 
we have calculated a number of moment properties (mean first passage times to absorption, mean recur
rence times and their dispersion, mean excursion from the origin, etc.) for random walks with next-nearest 
neighbor transitions and for random walks with exponentially distributed step length. In the latter case, 
variation of one of the parameters permits us to cover the whole range of step lengths from nearest 
neighbor transitions to steps of any finite length I. Since we have obtained explicit expressions for the 
generating function for these walks, any additional desired moment properties can readily be calculated. 
Among the interesting results of this study are: (1) The moment results for random walks with next
nearest neighbor transitions differ from the analogous nearest neighbor results at most by a factor of 
0(1); (2) the one-dimensional moment results for walks with arbitrary step length differ from the 
analogous one-dimensional results for walks with nearest neighbor transitions by several orders of 
magnitude; (3) the mean time to absorption for a random walker with equal probabilities for steps of 
arbitrary length in one dimension agrees to within a factor of 0(1) with the mean time for absorption for 
a random walker with nearest neighbor steps in three dimensions; (4) the mean time to absorption for a 
random walker with equal probabilities for steps of arbitrary lengths is independent of the dimensionality 
of the lattice. 

I. INTRODUCTION 
Previous work on random walks on lattices has been 

limited to nearest neighbor transitions. The modern 
techniques in this field have been developed by 
Montroll and his co-workersl-5 and have been 
applied by them to a number of problems in I-D, 
2-D, and 3-D lattices. 

There is, however, a large class of physical problems 
which cannot be correctly described by random walks 
with transitions only between nearest neighbor states. 
Some examples are: rotational relaxation with transi-

tions between rotational levels with I~JI > I, vibra
tional relaxation with transitions between vibrational 
levels with I~vl > I, stochastic theory of chroma
tography with a variable absorption length along the 
column, surface diffusion, and exciton diffusion. In 
general, stochastic processes where the transitions in 
the appropriate space (coordinate, energy, momen
tum, etc.) are due to strong interactions should be 
described by random walks involving transitions of 
longer "range" than the usual nearest neighbor case. It 
is clear, therefore, that it would be very useful to 
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extend the present theory of random walks to step· 
lengths of arbitrary size. 

We present here exact analytic results for random 
walks with next-nearest neighbor transitions and with 
exponentially distributed step lengths for one
dimensional lattices with and without boundaries, 
using the generating function method developed by 
Montrol!.1 The emphasis in this paper is on develop
ment of techniques and methodology rather than on 
applications. We believe that these results can readily 
be extended to two and three dimensions and we plan 
to present such results in a subsequent paper. 

II. SYMMETRIC NEXT-NEAREST NEIGHBOR 
RANDOM WALK 

A. Generating Function on Perfect Infinite Lattice 
and on Perfect N-ring 

In this and subsequent sections we shall use the 
following notation: 

P(li' Ii) is the probability that the random walker 
makes a step from site Ii to site Ii' 

Pn(l- 10) is the probability that the random 
walker starting at site I = 10 is at site I after the nth 
step on an infinite perfect lattice, i.e., a lattice without 
traps and boundaries. 

The probabilities P(li' Ii) and P n(l - 10) have the 
properties 

2, Pn(l- 10) = 1. (2) 
t 

The generating function G(z, I - 10) is defined as 

OCJ 

G(z, i - io) == 2, znp n(l - io)' (3) 
n~O 

We consider only random walks for which, on a 
perfect infinite lattice, P(li' Ii) depends only on the 
difference (Ii - Ij)' For a walker starting at the 
origin 10 == 0, the probability P n (I) is the coefficient of 
eil4> in the expression1 

i.e., 

).,n(r/» == (~OCJP(k)eik4>r. k = ii - ii' 

Pn(l) = -.L itT ).,n(r/»e-il4> dr/>. 
27T -tT 

The generating function G(z, l) is then 

G(z, l) = -.L ~>n (" ).,n(r/»e-ut/> dcjJ 
27T n~O J-" 
1 I" e-i1t/> = - dr/>. 

27T -1T 1 - z).,(r/» 

(4) 

(5) 

(6) 

For the next-nearest neighbor symmetric random 
walk we write 

= 0, 

for Iii - Iii = 2, (7) 

otherwise, 

where 0:::;; rx :::;; 1. Using Eqs. (3)-(7) leads to the 
generating function 

G(z, I, IX) 

1 i" e-ilt/> = - dr/>. (8) 
27T -" 1 - z[(1 - rx) cos r/> + rx cos 2r/>] 

The evaluation of this integral, which is detailed in 
Appendix A, yields 

where 

S1 = «IX - 1)/4rx)[1 + (1 + y_)t][1 + (I + y+)t], 

S2 = «rx - 1)/4rx)[1 + (1 + y_)l][1 - (1 + y+)t], 

S3 = «rx - 1)/4rx)[1 - (I + y_)t][1 + (1 + y+)l], 

S4 = «rx - 1)/4rx)[1 - (1 + y_)l][1 - (1 + y+)l], 

(10) 
and where 

Y± = 4rx {(1 - ZIX) ± [(1 - z)(1 + z - 2IXz)]t}. 
z(1 - rt.)2 

(11) 

The generating function G(z, I, IX) of Eq. (9) is 
particularly useful for random walks on an infinite 
lattice. For random walks involving absorbing 
boundaries it is convenient to work on a closed ring 
of N lattice sites. For such an "N-ring," the generating 
function G1.,,(z, 1, IX) is1 

00 

GN(z, i, IX) = 2, G(z, i + mN, rx). (12) 
m=-oo 

From Eq. (9) it then follows that 

GN(z, i, rx) 

2 [ S3 (S~!I + Sf-Ill) 

= ZCX(S4 - S3) (S3 - S1)(S3 - S2) 1 - sf 
S (Sill + SN-III)] 

_ 4 4 \" • (13) 
(S4 - S1)(S4 - S2) 1 - S4 

The symbols III and N - III in Eq. (13) label the same 
site on an N-ring. 
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1,-1 I, I, N+I,-I Ntl, 

, vr---------J/ 

" SOlES 

FIG. I (a). One-dimensional chain. In a nearest and next-nearest 
neighbor random walk, the mean first passage time for a walker 
starting at site I = 10 to cross the boundary sites 1, and N + 1, - I 
is equal to the mean time for the walker to be absorbed at anyone 
of four trap sites 1" 1, - I, N + I, - I, and N + 1, . 

B. Mean First Passage Times 

We are now in a position to calculate various 
specific results for a random walk on a one-dimen
sional lattice with and without boundaries for our 
model of nearest and next-nearest neighbor step 
lengths. We will first calculate the mean time required 
(i.e., the average number of steps) for a random 
walker starting at lattice site 10 to cross for the first 
time the boundaries II and (N + 11 - 1) of an interval 
containing N sites [see Fig. I (a)]. Since the random 
walker can make steps to next-nearest sites, the 
"crossing" of the boundary points 11 and (N + 11 - 1) 
can take place either by stepping on these points or by 
crossing over these points and stepping on the points 
(11 - 1) and (N + 'I)' Figure 1 (b) shows the equiv
alence of the "N-ring" formulation of this problem 
with that on an open lattice. The problem of mean first 
passage times as formulated above is completely 
eqUivalent to the calculation of a "mean time to 
absorption" or a "mean time to trapping." We shall 
discuss mean first passage times throughout this paper 
in terms of mean time to trapping. 

Let Qn(l - 10) be the probability that a walker 
starting at site I = 10 reaches point I on the nth step 
in the presence of the absorbing points 11 - 1 and 
lIon an open lattice [see Figs. 2(a) and 2(b)]. The 
probability that the walker has not been trapped 
by the nth step is 

The probability that he is trapped on or before the 
nth step is 

;.:J,.H+I 

f(, J,-I, "+1,-1 

• 
N SITES . 

4, 

FIG. I(b). One-dimensional N-Ting. The mean absorption time 
of Fig. I (a) is equal to the mean absorption time of a walker starting 
at site 10 with traps at sites I, and 1, - 1. 

1-3 I-I It I 1+3 ... ---------0---7------0---- '" 

·L~~---~~, 
1-4 1-2 1+2 1+4 

FIG. 2(a). Schematic of nearest and next-nearest neighbor 
stepping probabilities on an infinite one-dimensional chain. The 
solid lines connect nearest neighbor sites between which the walker 
can step with probability !(1 - oc) in the directions indicated by 
the arrows. The broken lines connect next-nearest neighbor sites 
between which the walker can step with probability !oc. 

The probability that he is trapped on the nth step is 
then 

The average number of steps required for trapping is 

Cf:) 

2iia(iO' 11) = L n L [Qn-l(1 - 10) - Qn(l- 10)], 
n=1 1*11.1,-1 

(14) 

where the subscript 2 denotes the two trapping sites. 
In terms of the generating function 

00 

F(z, I - 10 , a) == I znQn(/ - 10)' (15) 
n=O 

we have 

(16) 
Since 

(17) 

it follows that 
OCJ 

LF(z, 1- 10 , a) = ,Lzn,LQn(/- 10) = 1/(1- z). 
I n=O I 

Equation (16) can thus be rewritten as 

2iia(/o, 11) =.E.. {(I - z)[F(z, 11 - 10, a) 
OZ 

(18) 

+ F(z, 11 - 1 - 10 , a)]}.=I' (19) 

1,-3 
• 

• 
1,-2 

~------\!\t· 
L-------------. I, 1,+2 1,+4 

FIG. 2(b). Schematic of nearest and next-nearest neighbor 
stepping probabilities on an infinite one-dimensional chain with 
traps at sites I, and I, - 1. The starting point of the walker is at any 
site I> I,. 
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On an N-ring [Fig. 1 (b)] we have 

2n.llll' II) = i {(I - z)[FN(z, 11 - 10 , oc) 
OZ 

+ F.v(Z, 11 - 1 - 10 , OC)]}Z~I' (20) 

where FN(z, I - 10 , oc) is the generating function for 
walks on an N-ring with two trapping sites. In 
Appendix B we derive the general relation between 
the generating function FN(z, I - 10 , oc) and the 
generating function Gs(z, I, oc) of Eq. (13). For the 
special case of I = 11 and I = 11 - 1 required for 
the evaluation of Eq. (20) this relation becomes 

F N(Z, II - 1o, oc) + F N(Z, 11 - 1 - 10 , oc} 

GN(z, 11 - 10 , oc) + GN(z, 11 - 1 - 1o, oc) 

(1 - z)[GN(z, 0, oc) + GN(z, 1, oc)] 
(21) 

Using the result (13) for GN(z, I, oc) or its expansion 
in powers of (1 - z) given by 

GN(z, 1, oc) 
1 N 2 

- 6N III + 6/2 (15oc + 1) --- + - ----'----'---
N(I - z) 6N(1 + 3oc) 6N(1 + 3OC)2 

2oc(Xlti + XN-iZl)[(1 + 3oc)(1 - oc)]! 

+ (1 - XN)(1 + 3oc)2(1 - oc) 

+ 0(1 - z), (22) 

where 

X = -(1/2oc){1 + oc - [(1 + 3oc)(1 - oc)]!}, (23) 

we then find from Eq. (20) that 

n (I I) _ (II] - 10 - II)(N - 111 - 101) 
2 " 0' 1 - (1 + 3oc) 

[(1 + 3oc)(1 - oc)]! (1 + X) + ocN =---~-----'-'=- "":'--"'-
(1 + 3oc)2(1 - oc) (1 - XN) 

X (1 + XN - I _ XIII-lo-il _ XN--Ili-IOI). 

(24) 

Averaging Eq. (24) over the starting point 1= 10 
yields 

6(1 + 3oc)(N - 2) 

X (I _ 3[(1 + 3oc)(1 - oc)]! (1 + XN) 

N(1 + 3oc) (1 - XN) 

2(1 - 3OC») + . 
N 2(1 + 3oc) 

(25) 

In the limit N -+ 00, we have 

N 2 

lim 2(n)" --+- _....::..c... __ 

N--+oo 6(1 + 3oc) 
(26) 

The above results should be compared with the 
corresponding results for nearest neighbor random 
walks on an N-ring with one trapping pointI •6 : 

In(/o, 11) = (Ill - 10D(N - III - 10 1), (27) 

1 _. N(N + 1) 
I(n) == -- L ~n(lo, 11) = , (28) 

N .,... 110*11 - 6 
and 

lim l(n) -+ N 2j6. (29) 
N--+oo 

For oc = 0, which corresponds to the pu:r~ nearest 
neighbor random walk, Eqs. (24)-(26) reduce to Eqs. 
(27)-(29) as they should. 

The case oc = 1, which corresponds to a r.andom 
walk with next-nearest neighbor transitions only, 
must be considered separately. The generating 
function G(z, I, oc) on an infinite lattice given by Eq. 
(9) continuously approaches, as oc -+ 1, that of a 
nearest neighbor random walk on an infinite latticel 

in which only every other lattice site is available to 
the walker: 

1 (I - (1 _ Z2)!)11/2 1 
lim G(z, I, oc) -+ 2 1 . ' 
",--+1 (1 - z F z 

I even, 

--+- 0, I odd. (30) 

The generating function GN(z, I, oc) on an N-ring 
given by Eqs. (13) and (22) is discontinuous at oc = 1. 
For 0::::;; oc < 1, the walker has N sites available. 
At oc = 1, two situations can occur. If N is even, the 
walker can only step on NI2 of the sites, thus per
forming effectively a nearest neighbor random walk 
on a ring which is half as long as the original N-ring. 
If N is odd, all the sites are available to the walker, 
but half of them can only be reached after making a 
full circuit on the other half. From Eq. (26) which 
has no discontinuity as oc -+ 1, we find 

(31) 

The mean first passage times for trapping for nearest 
and for next-nearest neighbor random walks thus 
differ at most by a factor of 4. This result is intuitively 
obvious [e.g., see Eq. (29)] in that for a finite interval 
of Nlattice sites, the walker has only NI2 sites available 
in the limiting case of the pure next-nearest neighbor 
random walk. 

In the above development we have discussed mean 
first passage times where the events to be counted 
were the arrival of the random walker at a boundary 
point or his crossing over the boundary point. We 
will now discuss the problem of mean first passage 
time for the case where the random walker must 
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FIG. 3. One-dimensional N-ring. • 
The walker begins his walk at 
1= 10 and the trap is at site I, = • 
N+',. 

• 

• /0 

. . 

. . 

. 
.'"Nt/l 

• 
N SITES 

• 
• . 

step on the boundary point. In nearest neighbor 
random walks there is no need to make this distinc
tion; there is, however, a need to make such a 
distinction for random walks involving transitions 
to next nearest sites. It is intuitively clear even before 
making the detailed calculation that the mean first 
passage time for stepping on a given lattice site will 
be considerably longer ,than that for stepping or 
crossing that lattice site for finite N. To develop these 
results we use the N-ring shown in Fig. 3, with the 
random walker starting at I = 10 and arriving at 
I = 11 for the first time. (The mean first passage time 
for stepping on a particular lattice site on an infinite 
open lattice is clearly infinite.) The mean recurrence 
time is just a special case of the above with 11 = 10 , 

Let Dn(l - 10) be the ,probability that a walker 
starting at site I = 10 reaches point I on the nth step for 
the first time on an "open" lattice. The probability 
Dn(1 - 10) can be related to the probability Pn(1 - 10) 

of Sec. IIA by! 
n 

P n(l - 10) = L, D il - 10)P n-lO), (32) 
;=1 

where Pn-/O) is the probability that a walker starting 
at any lattice site I returns to the same site I after 
n - j steps. Equation (32) expresses the fact that a 
walker can arrive at site I after n steps by arriving there 
for the first time after j steps and returning to site I in 
n - j steps. We define the generating function 
E(z, I - 10 , oc) by 

<Xi 

E(z, 1- 1o, oc) == 2.znDn(/- 10), (33) 
n=1 

Multiplying Eq. (33) by zn and summing from n = I 
to n = 00 gives, where J1,l0 is the Kronecker delta, 

<Xl 

L, znp,,(1 - 10) = G(z, I - 10 , oc) - buo 
n=1 

00 n 

= L, L,z;D;(l-lo)zn-;Pn_iO) 
n=1 ;=1 

00 <Xl 

= 2. 2. z; D;(I - lo)zmp m(O) 
;=1 m=O 

= E(z, 1 - 10 , oc)G(z, 0, oc). (34) 

Solving for E(z, I - 10 , oc) yields 

E( I
-I )_G(z,I-lo,oc)-bI.IO 

z, o,oc- . 
G(z, 0, oc) 

(35) 

On an N-ring 

E -J I _ I ) _ G~z, I - 10 , oc) - bl •lo 
N\Z, 0,1X - . 

GN(z, 0, oc) 
(36) 

The mean first passage time for arriving at site I = 11 
is 

1;;~(l0' II) = ~ ENCz, 11 - 10 , OC)I.=l' 

For h ¥- 10 we have 

- (1 I) _ ~ GN(z, 11 - 10 , IX) I 
In~ 0, 1 - , 

az GNCz, 0, oc) z=1 

(37) 

(38) 

where the subscript 1 denotes the one trapping site. 
For II = 10 we have 

1;;~(l0' 10) = - .! 1 I, (39) 
az GN(z, 0, oc) z=l 

where lii~(Io, 10) is the mean recurrence time. Using 
GN(z, I - 10 , IX) of Eq. (22), we obtain 

;; (1 I) = (Ill - 10lXN -Ill - 10D 
1 a 0 , 1 (1 + 3oc) 

2Noc[(1 + 31X)(1 - oc)]! 
+--~~--~~--~ 

(1 + 3oc)2(1 - oc) 
(1 + XN - Xll,-Iol - X .v-II,-lol) 

X ~~------------------~ 
(l - XN) , 

(40) 

where X is defined in Eq. (23). Averaging Eq. (40) 
over starting points I = 10 of the walker yields 

l(n)~ == _1_ L 1ii~(lo, II) 
N - 110*/1 

N3 

6(1 + 3oc)(N - 1) 

x (1 + 12[(1 + 3oc)(1 - oc)]!(1 + XN) 

N(l - 1X)(1 + 3oc)(1 - XN) 

151X + 1 ) 
- N 2(1 + 3oc) . 

In the limit as N --+ 00, we have 

N 2 

lim (n) --+ ---
N-+<Xl 

1 ~ 6(1 + 3oc) , 

(41) 

(42) 

whic.h is asymptotically identical with 2(n)~ of Eq. (26). 
The corresponding results for the mean first passage 
times for the pure nearest neighbor random walk are 
given by Eqs. (27)-(29). 

As we mentioned earlier, we would expect for finite 
N that the mean first passage time for stepping on a 
particular lattice site is longer than that for stepping 
on or crossing that lattice site. In the former case, on 
an N-ring, the walker could circle the ring several 
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times in either or both directions before actually 
stepping on the particular site, whereas in the case of 
stepping on or crossing the site the walker cannot 
circumnavigate the ring and is clearly trapped more 
quickly. From Eqs. (2S) and (41) it follows that 

1(n)a - 2(n)a = Ng(oc) + f(oc) > 0, (43) 

for oc ~ 0. For oc = 0, which corresponds to the pure 
nearest neighbor random walk, g(oc) = f(oc) = 0, 
and 1 (n)o = 2(n)0 as should be the case. 

For the mean recurrence time we find from Eq. (39) 

(44) 

This result is a special case of a general theorem on 
recurrence times in Markoff chains.1 As applied to 
random walks, it states that the mean recurrence 
time of a random walker is equal to the total number 
of sites available to the walker, independently of 
the dimensionality of the walk and of the form of the 
stepping probability function p(/i - Ii)' For the pure 
next-nearest neighbor random walk with oc = 1 we 
find lia(lo, 10) = NI2 for N even and lia(lo, 10) = N 
for N odd. The dispersion in the mean recurrence 
time does depend very sensitively on the details of the 
random walk. We will evaluate this quantity for 
exponentially distributed steps in Sec. III. 

Analogous calculations can be carried out for 
lattices with one or two reflecting boundaries. We will, 
however, postpone such calculations to a subsequent 
paper where we plan to discuss some physical 
applications. 

C. Excursion from the Origin 

We now direct our attention to the "excursion" 
from his point of origin of our random walker on a 
perfect infinite lattice after a given number of steps, 
i.e., to the moments of Pn(l- 10) with respect to 
(l - 10)' With no loss of generality we can take the 
starting point of the walker to be 10 == 0. 

The moments of Pn(l) can be obtained from the 
stepping probabilities P(li - Ii) by inverting Eq. (S) 1: 

).n(4)) = f Pn(l)ei!<P, (45) 
!=-oo 

where ).n(4)) is defined in Eq. (4). For the moments of 
Pn(l) we then obtain 

(46) 

It is clear that for a symmetriC random walk, i.e., 
Pn(/) = Pn(-l), all the odd moments are zero. Thus 
the mean distance from the origin (m = 1) is zero. 

We will therefore consider a general nearest and 

next-nearest neighbor random walk using the following 
stepping probabilities: 

P(li - Ii) = (3, for Ii - Ii = 2, 
= y, for Ii - I; = 1, 

= E, for Ii - Ii = -1, 

='YJ, for Ii - Ii = -2, 
=0, otherwise, (47) 

where 
(3+Y+E+'YJ=1 (48) 

and where (3, y, E, and 'YJ are ~ 0. Equation (4) then 
becomes 

).n(cp) = ({3e2i
'" + yei'" + Ee-i 4> + 'YJ e- 2i"')n, (49) 

and, using Eqs. (46) and (48), we obtain 

00 

(/) == I IPn(l) = n[(2{3 + y) - (2'YJ + E)], (SO) 
1=-00 

00 

([2) == I [2p n(l) 
1=-00 

= n[l + 3({3 + 'YJ)] 

+ n(n - l)[(2{3 + y) - (2'YJ + EW (SI) 

and, for the dispersion, 

(/2) - (/)2 

= n{1 + 3«(3 + 'YJ) - [(2(3 + y) - (2n + E)]2}. 

(S2) 

For a symmetric random walk, where (3 = 'YJ = oc/2 
and y = E = (1 - oc)/2, we have 

(I) = 0, 

(12) = n(l + 3oc). 

(S3) 

(S4) 

The corresponding results for a nearest neighbor 
random walk,l with p(l) = p, p( -1) = q = 1 - p, 
and P(li - Ii) = ° otherwise, are 

(/)1 = n(p - q), (5S) 

([2)1 = n + n(n - l)(p - q)2, (S6) 

(/2\ _ (/)~ = n[l _ (p _ q)2], (57) 

where the subscript 1 denotes the nearest neighbor 
results. For a symmetric nearest neighbor random 
walk (p = q = t) 

(/)1 = 0, 

([2)1 = n. 

(S8) 

(S9) 

Equation (50) shows that it is possible to have a zero 
average displacement from the origin even for an 
asymmetric next-nearest neighbor random walk, i.e., 
for f3 + y ~ E + n. For instance, (I) = ° for f3 = 1

3
6' 
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Y = T\-' € = T\, and 'fj = /6' What we wish to empha
size here is that the mean distance from the origin is. 
not determined solely by the total probabilities of 
stepping right or left, but depends on the individual 
probabilities for steps to nearest and next-nearest 
neighbor sites. 

The dispersion (/2) - (/)2 also depends sensitively on 
the value of each of the stepping probability param
eters in a next-nearest neighbor random walk [see 
Eqs. (52) and (57)]. The dispersion becomes greater 
when the probabilities of reaching next-nearest 
neighbors (fJ and 'fj) increase. In a symmetric random 
walk [Eqs. (54), (59)] the dispersion in the next
nearest neighbor random walk is greater than that 
for the nearest neighbor random walk, with the ratio 
(/2)/(/2)1 having a maximum value of 4 for et. = l. 
This is due to the fact that,in a symmetric, pure, 
next-nearest neighbor random walk,the walker, after 
n steps, can be at most twice as far from the origin 
as in the pure nearest neighbor random walk. 

A comparison of the various results presented 
above for nearest neighbor walks and for nearest 
plus next-nearest neighbor walks shows that the effect 
of the next-nearest neighbor step is not very large. 
In general, most of the mean properties, such as mean 
absorption times, mean excursion, etc., for the one 
and two step walks differ at most by a ratio of (l + 3et.) 
which has a maximum value of 4 when et. = 1. 
Certainly, there are no order of magnitude changes. 
However prosaic, this result is of real interest. It 
should lay to rest, for instance, once and for all, the 
ideas expressed by some authors, including one of the 
present ones, 7 that next-nearest neighbor transitions 
due to variational anharmonicity of osciIIators could 
sufficiently improve random walk calculations of the 
rate of dissociation of diatomic molecules to make 
them agree with experiments. There are a number of 
other examples in the literature where the possibility 
of next-nearest neighbor transitions has been invoked 
as a possible means for order magnitude changes in 
random walk calculations. It is now clear that this 
assumption is not correct. 

If next-nearest neighbor transitions do not produce 
any dramatic effects, the question of course presents 
itself as to the effect of very long jumps in random walk 
calculations. Some years ago, Shuler and Weiss8 

showed via computer calculations that order of 
magnitude effects can be obtained in mean first 
passage times by the use of exponentially distributed 
jump probabilities of the form pel) = ce-a!. We were 
unable at that time to effect an analytic solution of 
our random walk problem. The powerful new methods 
developed by MontroW-4 since that time now per-

mits one to carry out such an analytical treatment for 
random walks with very long steps. The next section 
is devoted to developing the analytical result for such 
random walks using the above exponentially distrib
uted jump probabilities. 

III. RANDOM WALK WITH EXPONENTIALLY 
DISTRmUTED STEP LENGTHS 

A. Generating Function on Perfect Infinite Lattice 
and on Perfect N-Ring 

On a perfect infinite lattice we use the stepping 
probabilities P(li' Ii) for the random walker: 

p(li - Ii) = c1r(!;-!!)a, Ii > Ii' 
= c 2e-(!!-l;)a, Ii < Ii' 
= 0, (60) 

with a, b, Cl, C2 > 0. This stepping probability 
function describes an asymmetric random walk if 
a ¥= band/or C1 ¥= c2 • The parameter a determines 
the relative probabilities that the walker takes steps 
of different lengths to the right, e.g., 

P(li- li+ 1)=e-a 1.>1.. (61) 
p(li - I j ) '" 

The parameter b determines the same relative proba
bilities for steps to the left. The parameters C1 and C2 

in combination with a and b determine whether the 
walker will step preferentially to his left or to his 
right, e.g., 

p(l) C1 -(a-b) 
--=-e 
p( -1) C2 

(62) 

The constants a, b, c1 , and C2 are related by the 
normalization of the P(li - Ii)' For k = Ii - Ii we 
find 

00 C1 C2 "2 p(k) = -- + -b- = 1. (63) 
k=-oo ea 

- 1 e - 1 

When a = band C1 = C2 = C, we have a symmetric 
random walk with exponentially distributed steps. 
We then write 

P(li - Ii) = ce-I!j-!!Ia, II; - Iii> 0, 

=0, (64) 

with the normalization relation 

c = (ea 
- 1)/2. (65) 

The choice p(O) = 0 is completely arbitrary and any 
other choice could have been made subject to the 
normalization condition (1). 

The nearest neighbor random walk results will be 
recovered in the limit as a -* 00 since for that limit a 
nonzero stepping probability P(/i - Ii) is obtained 
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only for II; - 1;1 = 1. In the limit as a---*O,p(li - 1;)---* 
(liN) (for a finite lattice with N sites) and the random 
walker can make steps of any length II; - Iii with 
equal probability liN. Adjustment of the parameters 
a and b thus enable one to study random walks with 
a very broad range of step probabilities from nearest 
neighbor to equal probability of step length of any 
size. 

To obtain the generating function for the stepping 
probabilities given by Eq. (60), we need to evaluate 
the quantity A( ~) : 

00 

A(~) = I p(k)eik4> 
k~-oo 

00 -00 

= Cl I e-kaeik4> + C2 I ekbeik4> 
k~l k~-l 

00 00 

= Cl I e-kaeik4> + C2 L e-kbe-k 4> 
k~l k~l 

The generating function is then 

G(z, 1, a, b, C1 , c2) 

= J... 1" e- il4>(1 _ zC1 _ ZC2 )-ld~ 
27T -11 e(a-i4» - 1 e(Hi4» - 1 . 

(67) 

The evaluation of this integral, which is detailed in 
Appendix A, yields 

G(z, 1, a, b, C1 , C2) 

where 

_ ( )1 [A + z(c1 - c2)D] 
- Yl , 

B 
1 ~ 1, 

_ ( )-1 [A + z(c2 - c1)D] 
- Y2 , 

B 
I ~ -1, 

[A + (2 + ZC1 + zc2)D] 

B 
1 = 0, (68) 

A = (ea+b - 1)(zc1 + ZC2) 

+ 2ea+bz2cIC2 - Z2C; - z2cL (69) 

D = [(ea+b + 1 + ZCl + ZC2)2 

- 4ea+b(1 + zc1)(1 + zc2)]!, 

B = 2(1 + zc1)(1 + zc2)D, 

(70) 

(71) 

(72) 

ea+b + 1 + Z(CI + C2) - D 
Y2 = (73) 

2eb(1 + ZC1) 

and where the constants Cl, C2, a, and b are related 
by Eq. (63). For the symmetric random walk the 

generating function reduces to 

(x)ili z(e2a - 1) 
G( Z I a) = ---'---'-----0....._---'_ 

, , [2 + z(ea - l)]Do ' 
III ~ 1, 

z(e2a - 1) + 2Do 

[2 + z(ea -1)]Do' 
1 = 0, (74) 

where 

Do = {(ea + l)[ea + 1 + z(ea - 1)](1 - z)}t (75) 

and 

x = e
2a + 1 + z(ea - 1) - (ea 

- l) Do . 

ea [2 + z(ea 
- 1)] 

(76) 

The generating functions ofEqs. (68) and (74) gener
ate random walks on a perfect infinite lattice. The 
corresponding generating functions for walks on a 
perfect N-ring can be evaluated, as in Sec. II, from Eq. 
(12). Before doing this, we will work out the corre
sponding stepping probabilities on an N-ring, which 
we will denote by PN(/i - I;). Since an N-ring can be 
thought of as an infinite chain wrapped up in such a 
way that sites ... I - 2N, I - N, /, 1+ N, 1+ 
2N· .. coincide for each I, the P.v(li - Ii) are related to 
the P(li - Ii) of Eq. (60) by an equation similar to Eq. 
(12). Ifwe denote Ii - Ij by k, we can write 

00 

pN(k) = I p(k + nN), -N < k < N. (77) 
n=-oo 

Suppose 0 < k < N. Then 
00 00 

pN(k) = I p(k + nN) + L p(k - nN) 
n=O n~l 

00 00 

= Cle-ka I (e-Na)n + C2ekb I (e-Nb)" 
n~O n=l 

= ( C1 )e-ka + ( C
2 )e-(N-k)b. (78) 

1 - e-Na 1 - e-Nb 

For -N < k < 0 we have 

00 00 

PN(k) = I p(k + nN) + 2 p(k - nN) 
n=l n=O 

00 00 

= c1e-ka L (e-Na)n + c2e
kb L (e-Nb)n 

n~l n=O 

If k = 0 (or, equivalently, k = Nand k = -N), we 
have 

00 

PN(k) = I penN) 
n=-oo 

(80) 
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The combination of exponential terms in Eqs. (78)
(80) reflects the fact that on an N-ring the walker can 
get from one site to another site a distance k away 
either by making a step of length Ikl in one direction 
or by a step oflength N - Ikl in the opposite direction. 
For a symmetric random walk [i.e., a = b, C1 = C2 = 
(ea 

- 1)/2], the N-ring stepping probabilities become 

(k) = (e
a 

- 1) (e-1k1a + e-(N-Ikl>a), 
PN 2(1 _ e-Na) 

0< Ikl < N, 
(ea _ l)e-Na 

P (- N) = PN(O) = PN(N) = 1V' (81) 
N\ (1 _ e-1 a) 

In the limit a ---+ 0, b ---+ 0 (i.e., a « liN, b « liN) the 
walker can, with equal probability, step on any of 
the N points of the ring at each step. It is easily seen 
from Eqs. (78)-(80) and the normalization condition 
that 

lim p.v(k) = lIN, 0:::;; Ikl < N. (82) 
a-O 
b-O 

The generating function on an N-ring obtained by 
substituting Eq. (68) into Eq. (12) is 

G N(Z, I, a, b, C1 , c2) 

= (A + z(c1 - C2)D) yt 
B 1- yf 

(
A + z( C2 - C1)D) yf-! 

+ B 1 - yf' 
1 ~ 1, 

= (A + z(c1 - C2)D) yi"'+l 

B 1 - yr 
(

A + z(c2 - C1)D) y;-! 
+ BIN' - Y2 

I:::;; -1, 

V = (A + z(C I - C2)D) yi . 
B 1 - Yi" 

(
A + z(c2 - C1)D) ytj 

+ BIN - Y2 

(
A + (2 + ZC1 + ZC2)D) 

+ B ' 
1 = 0, (83) 

where A, B, D'Yl' andY2 are defined in Eqs. (69)-(73). 
For a symmetric random walk, the generating func
tion on an N-ring becomes 

GN(z, I, a) 

__ ( z(e2a 
- 1) )(X ill + XN--ill) , 

[2 + z(ea 
- 1)]Do (1 - x N

) 
III ~ 1, 

( 
z(e2a - 1) )(1 + xN) 2 

= [2 + z(ea - 1)] Do (1 - xN) + [2 + z(ea - 1)]' 
1=0, (84) 

where Do and x are defined in Eqs. (75) and (76). 

It is easily checked that the generating functions 
given in this section reduce to the corresponding 
generating function for the nearest neighbor random 
walk in the limit a ---+ 00, b ---+ 00. 

B. Mean First Passage Times 

We will first calculate the mean time required for 
a random walker with exponentially distributed step 
lengths starting at lattice site I = 10 to cross for the 
first time the boundaries 11 and (N + 11) of an interval 
containing N - 1 sites [see Fig. 4(a)]. Since the random 
walker can make steps of any length, the "crossing" 
of the boundary points 11 and (N + 11) can take place 
either by stepping on these points or by crossing these 
points and stepping on the points II - k and N + 
II + k for all k ~ 1. The problem of the mean first 
passage time formulated above is completely equiv
alent to the problem of mean absorption time or mean 
time for trapping with absorbing boundaries at II 
and (N + 11) in that we define absorbing boundaries 
at II and (N + II) by placing traps at all sites II - k 
and N + II + k with k ~ ° [see Fig. 4(b)]. 

In Sec. lIB, where we dealt with the same problem 
for a nearest and next-nearest neighbor random walk. 
we formulated the problem of two absorbing bound
aries in terms of a walk on an N-ring containing two 
trapping sites. In the present case, where we allow 
the walker to take steps of any length and therefore 
need an infinite number of traps to define an absorb
ing boundary, we cannot follow the same N-ring 
formulation. We will thus work on an open lattice. 
We will use the N-ring formulation later, when we 
consider the mean first passage time for stepping on 
a particular lattice site. 

Let Qn(l - 10) be the probability that a walker 
starting at site I = 10 reach point I on the nth step in 
the presence of the absorbing points II - k and N + 
II + k, k ~ 0. The probability that the walker has 

. ... . I .. .. • .... I · •. .. 
1,-1 I, 10 Ntl, Nt/,+I 

~---------v~--~ 

N-I SITES 

FIG.4(a). One-dimensional infinite chain with absorbing bound
aries at sites 11 and N + 11' The walker starts at site 10 , with 11 < 
10<N+l1 • 

···X)( X.··· ••••• XX ••• 
1,-2 1,-1 /, I, Ntl, Nt/,tl 

-TRAPS- v --TRAPS-
N-I NONTRAPPING SITES 

FIG. 4(b). For a random walk with exponentially distributed 
step lengths, the absorbing boundaries of Fig. 4(a) can be con
structed by placing traps at sites I, - k and N + I, + k with k = 0, 
J,···,oo. 
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not been trapped by the nth step is 
N+l,-I 

.2 Qn(l - 10)' 
1=11+1 

The probability that he is trapped on or before the 
nth step is 

The probability that he is trapped on the nth step is 

(1 -NI-IQnCl - 1
0
») - (1 _NI-IQn_I(1 - 1

0
»), 

1=1,+1 1=11+1 

The average number of steps required for trapping is 
then 

oc/ia.b.Cl. ci lo, 11) 
00 N+Z,-I 

= .2 n .2 [Qn-I(l - 10) - Qn(l - 10)], (85) 
n=O l=lt+I 

where the subscript 00 denotes the infinite number of 
trapping sites. In terms of the generating function 

00 

F(z, I - 10 , a, b, CI , c2) == .2 znQnCl - 10), (86) 
n=O 

we have 

1, 00 

.2 F(z, I - 10 , a) + L F(z, 1- 10 , a) 
1=-00 l=II+N 

1 N+l,-I 

= -- - L F(z, I - 10 , a) 
1 - z l=I,+1 

We have evaluated Eq. (87) only for the symmetric 
random walk [i.e., a = b, CI = C2 = (ea - 1)/2]. We 
can thus simplify the notation and write 

Following the same steps here as we did between 
Eqs. (16) and (19), we can rewrite the sum in Eq. (88) 
over nontrapping sites as a sum over trapping sites. 
Since 

00 1 .2 F(z, I - 1o, a) = --, (89) 
1=-00 1 - z 

we have 

In Appendix B we derive the relation between the 
combination of generating functions F(z, / - /0' a) 
appearing in Eq. (90) and the generating function 
G(z, 1, a) for a perfect infinite lattice of Eq. (74). The 
result is 

[G(z, 10 - 11, a) + G(z, N - (10 - 11), a)](1 + x) 
(91) 

where x is defined in Eg. (76). The expression corre
sponding to Eg. (91) in the presence of only one 
absorbing boundary is 

1 N+II-l 
---lim L F(z,I-/o,a) 
1 - z N-+ool=I,+1 

l, 

= L F(z, I - 10' a) 
1=-00 

[G(z, 11 - 1o, a) + G(z, II - 1 - 10 , a)] 

= (1 - z)[(l - xe-a)G(z, 0, a) + (1 + e-a)G(z, 1, a)] , 

(92) 
where we have used the fact that x < 1 and 

lim xN = O. 

Substituting Eq. (91) into Eq. (88) or into Eq. (90), 

we find 
_ (1 - e-a)2 

ooni/o, II) = (10 - II)[N - (10 - 11)] 
(1 + e-a) 

+ e-a[(N ~ ~ ::) + I} (93) 

Averaging Eg. (90) over the starting point 10 yields 
1 N+l1-I_ 

oo<n)a == -- L oonilo, II) 
N - 11o=h+1 

(1 - e-~)2 N(N + 1) e-a(1 - e-a) 
= + N + e-a

• 
(1 + e-a) 6 (1 + e-a) 

In the limit N -'>- 00, for a » liN, 
(94) 

(1 - e-a)2 N 2 

<n) -----+ -
00 a N-+oo (1 + e-a) 6 . 

(95) 
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The corresponding results for nearest neighbor 
random walks are given in Eqs. (27)-(29). It can 
readily be verified that Eqs. (92)-(95) approach the 
nearest neighbor random walk results in the limit 
a -+ 00. Thus, for instance, 

oo<n) = l<n) = N(N + 1)/6, 

lim oo(n) = l(n) -+ N 2/6, etc. 
N_oo 

In the limit a -+ ° (i.e., a « liN), when all lattice sites 
(whether or not they are traps) are equally likely to be 
reached at each step, we have 

lim ooiiu(io, 11) = lim oo<n>a ~ 1 + Nal2 ~ 1, (96) 
a~O a~O 

and the walker, in the extreme case a = 0, is absorbed 
on the average after the first step. This results from the 
fact that there are an infinite number of trapping sites 
k = 0, 1, ... ,00 and only a finite number N of 
nontrapping sites, so that the probability that the 
walker steps on a nontrapping site on his first step 
is a set of measure zero. It is evident from a compari
son of the above results for the random walk with 
exponentially distributed steps with the nearest 
neighbor random walk results that there are now 
indeed order of magnitude differences. Thus the ratio 
of the mean first passage times for the cases a -+ ° 
and a -+ 00 is of order N2 with ° < N:::;;; 00. 

The above discussion was concerned with mean 
first passage times for a random walker to arrive at 
or cross the boundaries of a finite interval of lattice 
sites. The derivation of the first passage time for 
stepping on a particular lattice site on an N-ring has 
already been given in Sec. II, Eqs. (32)-(38). For a 
random walk with exponentially distributed step 
lengths one obtains 

() 
(1 - e-a)2 N(N + 1) 2Ne-a 

1 n = +. (97) 
a (1 + e-a) 6 (1 + e-a) 

In the limit N -+ 00, for a » liN, 

(1 - e-a)2 N2 
(n> -+ -

1 a N-->oo (1 + e-a) 6 
(98) 

In the limit a -+ 0, when all lattice sites on the N
ring can be reached with equal probability at each 
step, we find 

lim 1 (n)a ;>:j N(l - a/2) ;>:j N. (99) 
a-->O 

The mean recurrence time (10 = 11) for a random 
walk on an N-ring is given by [see Eq. (39)] 

iiaClo, 10) = - ~( 1 ). (100) 
oz GN(z, 0, a) z~l 

Using Eq. (89) for GN(z, 0, a), we obtain 

(101) 

in agreement with remarks following Eq. (44). 
We have also evaluated the dispersion !l.na(lo, 10) in 

the mean recurrence time for our random walker on 
an N-ring with symmetric exponentially distributed 
stepping probabilities. We define 

!l.na(lo, lo) == [~(lo, 10) - ii!(lo, lo)]!. (102) 

The use of Eqs. (32)-(36) and of the identity n2 = 
n(n --'- 1) + ii leads to 

!l. 2na(lo, 10) 

(
02 

1 0 1 -2 ) = 2 - - naUo, 10) • oz GN(z, 0, a) OZ GN(z, 0, a) z~l 

(103) 
Using GN(z, 0, a) of Eq. (84), we then obtain 

!l. 2n (l , I ) = N
3 

(1 - e--<»2 _ N2 (1 - 2e-
a

) 

a 0 0 3 (1 + e-a) (1 + e-a) 

N (2 - 4e-a _ e-2a) + - . (104) 
3 (1 + e-a) 

In the nearest neighbor random walk limit a -+ 00, 

with N fixed, we find 

in agreement with the nearest neighbor random walk 
resulU In the limit as N becomes very large, this 
reduces to 

(106) 

In the limit a -+ ° corresponding to equal probabili
ties for jumps of any length and for fixed N we find 

. !l.na(lo, 10) ( 1 )i 
lIm _ -+ (1 - a) - - (1 - a) , (107) 
a-->O naClo, 10) N 

which, in the limit as N -+ 00, reduces to 

(108) 

These results show that the maximum dispersion in 
the mean recurrence time occurs for the nearest 
neighbor random walk and that the dispersion 
decreases, though not monotonically, as the step 
length increases, i.e., as a -+ 0. 
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C. Excursion from the Origin 

To consider the excursion of the random walker 
with exponentially distributed step lengths from his 
point of origin after n steps, we use the equations 
already given in Sec. IIe: 

(17n)cxp =l=~colmPn(l) = (_i)mU~e/>mm An(e/»t=o' 

(109) 

where the subscript exp denotes the exponentially 
distributed step length. The quantity A(e/» for this 
case is obtained from Eq. (66) as 

An(e/» = C(a-i~~ _ 1 + e(b+i~:_ If (110) 

where [see Eq. (63)] 

C1 C2 1 --+--= , 
ea 

- 1 eb 
- 1 

(111) 

and we find for (/), the mean distance from the origin 
after n steps, 

I - ~ I (I) (c1e
a 

c2e
b

) < )exp = k. Pn = n (a 1)2 - (b 1)2· l=-co e - e -
(112) 

The corresponding result for a nearest neighbor 
random walk,l with p(l) = p, p( -1) = q = 1 - p, 
and P(li - Ij) = 0 otherwise, is 

(lh = n(p - q). (113) 

In the exponential random walk, the total probability 
for a walker to step to his right on a given step is 
cil (ea - 1); the total probability that he steps to his left 
is c2/(eb - 1). Making the correspondence 

Cl C2 

(ea - 1) +-+ p, (eb - 1) +-+ q 
(114) 

between the exponential and nearest neighbor random 
walks, we can rewrite Eq. (112) as 

(/)exp = n(p (ea ~ 1) - q (eb ~ 1»)· (115) 

In the limit a - 00, b - 00 the results for the 
"exponential" random walk thus again approach the 
nearest neighbor random walk results. In the limit as 
a, b « 1, Eq. (115) becomes 

(I) _ ( (1 + a) _ (1 + b») 
exl' - n p q . 

a b 
(116) 

If, for the sake of simplicity, we now take a = b, Eq. 
(116) reduces to 

lim (l)exp = n(1 + a/a)(p - q) ~ n/a(p - q). 
a=b~l (117) 

A comparison of Eqs. (117) and (113) shows that the 
mean excursion from the origin for a random walker 
with exponentially distributed step lengths is larger 
than that for a nearest neighbor random walk by 
the factor l/a for small a. It is evident that we are 
again dealing with order of magnitude differences 
between two random walks. 

From Eq. (109) we obtain the dispersion in the 
excursion from the origin for the exponential random 
walk: 

(/2 _ (ll = n[c1ea(e
a + 1) ce2b(eb + 1) 

)exp exl' (eU _ 1)3 + (eb _ 1)3 

- (eac~a1)2 - (ebc~bl)2) 1 (118) 

For a symmetric random walk Eq. (118) reduces to 

(12) _ (/ 2 _ n(1 + e-
a

) 
exp )exp - (1 _ e-a)2 . (119) 

When a - 00, this result approaches the nearest 
neighbor random walk result (/2)1 - (/)~ = n of 
Eqs. (57), (58). As a becomes very small, i.e., a« 1, 
the dispersion increases with a as 

1· 12 I 2 (2 - a) 1m < )cxp - < )exl' - n --2 - , 
a~O a 

(120) 

and becomes infinite for a = 0 when the walker can 
reach any point on the lattice with equal probability. 

IV. CONCLUSIONS 

We discuss below some interesting consequences 
and some as yet unsolved problems which arise from 
the results as presented in Sec. III. 

We found [Eq. (101)] that for a random walker 
with exponentially distributed step lengths the mean 
first passage time to reach a particular lattice site on a 
one-dimensional N-ring as a - 0 [p(k) = liN] is 
given by 

lim l<n)a = N. (121) 
a~O 

It is easy to calculate the generating function for the 
above random walk with a = 0 on aD-dimensional 
lattice. One then finds that for N fixed and finite 
the result (i2l) is independent of the dimensionality of 
the lattice. One can convince oneself, by "topological" 
reasoning, that this result must be correct. Since the 
random walker can go with equal probability liN to 
any point on the D-dimensional lattice, i.e., each 
point on a D-dimensional lattice of N lattice points is 
equally accessible in one step independent of D, the 
dimensionality cannot influence the result for 1 (n )a=o 

for fixed N. This is in distinction to the nearest 
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neighbor random walk, where the number of lattice 
sites which are accessible on each step increases 
sharply with dimensionality. It is therefore clear that 
appropriately chosen properties of 3-D random 
walks with exponentially distributed jump probabili
ties can, in the limit as a = 0, be calculated from the 
I-D model. 

MontrollL2 has evaluated the mean first passage 
time to a particular lattice site in one-, two-, and 
three-dimensional lattices with periodic boundary 
conditions for nearest neighbor random walks 
(a -+ 00). He finds the following leading terms for 
large N: 

l(n)a .... oo = k1N2 + O(N), (122) 
I-D 

l(n)a .... oo = k2N log N + O(N), (123) 
2-D 

l(n)a .... oo = k3N + 0(1), (124) 
3-D 

where the k's are constants which depend on the 
details of the lattice structure. It is very interesting 
to note that there is agreement, to within a constant 
of 0(1), between the very long step result [a = 0, 
p(k) = IjN] in one dimension, Eq. (121), and the 
nearest neighbor transition result in three dimensions 
[Eq. (124)] for the mean first passage time l(n). We 
believe that the comparison of other, appropriately 
chosen properties of I-D random walks with exponen
tially distributed step length and a = 0, with 3-D 
nearest neighbor random walk results, will show 
analogous agreement to within 0(1). 

The above result appears to have a close connection 
with recent theoretical work on phase transitions in 
I-D systems with an infinite range of forces. 9 It was 
found in these studies that phase transitions which 
occurred in real 3-D systems presumably through 
pair interactions (i.e., nearest neighbor interactions), 
such as gas-liquid critical points (van der Waal's 
condensation) and magnetic and other order-disorder 
transitions in solids, could be obtained mathemati
cally in 1-D systems in the limit of infinite range 
forces. One-dimensional models with finite and 
certainly with short-range forces do not show any 
phase transitions. Speaking generally, and very 
loosely, it would appear that the "connectivity" of 
long range I-D models is of the same order as the 
"connectivity" of short range 3-D systems and that 
3-D properties which depend strongly on this "con
nectivity" can be modeled by I-D systems with the 
appropriate long-range interactions (step length, 
forces, etc.). 

The above results are displayed schematically in 
Figs. 5(a) and 5(b). A study of these figures immedi-

ately raises the following questions: 

(1) What is the form of l(n)~-D and of analogous 
properties (moments) of random walks, as a function 
of a, ° < a < 00, in three dimensions? We know the 
results for a = ° and for a = 00 as shown in Fig. 
Sea), but we do not know as yet how to connect the 
two extremum points. If it should turn out that 
1 (n )~-D is essentially independent of a, i.e., of the step 
length, it would have important implications in the 
random walk interpretation of a number of experi
mental observations in physics and chemistry. 

(2) What is the form of l(n)a and analogous 
moments in higher dimensions, D > 3, as a function 
of a and D for a ¥= o? In other words, how does one 
fill in the empty expanse of Fig. 5 (b) ? We note from 
Fig. 5(b) that for nearest neighbor random walks 
1 (n) decreases with increasing dimension for D = 
1, 2, 3. How does it behave for D > 3? If it were to 
decrease with higher D, one would have the very 
surprising and unlikely result that, for D > 3, the 
mean first passage time for absorption is shorter for 
nearest neighbor walks than for walks with steps of 
arbitrary length. It is also possible that 1 (n)n.n. be
comes independent of D for D> 3 and remains of 
OeN). If this were the case, higher-dimensional results 
for nearest neighbor walks could then be deduced 
from the 3-0 results or the 1-0 results of random 
walks with exponentially distributed step length with 
a = 0. This question is of importance in the use of 
random walk models in the study of the unimolecular 
decay of polyatomic molecules, the study of the rate 
of formation of polymers from monomers and for 
many other problems. 

The generating functions derived in Sec. II and III 
allow one to evaluate many quantities in addition to 
the ones we have calculated here. Other typical 
quantities of interest are, for example, the number of 
distinct lattice sites visited after n steps, random walk 
properties in the presence of reflecting boundaries, 
random walks in the presence of reflecting boundaries 
and traps, etc. We will direct ourselves to the questions 
posed above and to the general dependence of random 
walk results on the "connectivity" of the system in 
subsequent papers. 
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FIG. 5(a). Schematic of the dependence of 
the mean first passage time to a particular 
lattice site on a (step length) in various 
dimensions. 
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FIG. 5(b). Schematic of the dependence of 
the mean first passage time to a particular 
lattice site on dimension for nearest neighbor 
random walks (a = OCJ) and for random 
walks with p(k) = lIN, a = O. 

APPENDIX A: EVALUATION OF GENERATING FUNCTIONS 
1. Symmetric Next-Nearest Neighbor Random Walk 

The generating function for symmetric next-nearest neighbor random walks can be evaluated by complex 
contour integration. We rewrite Eq. (8) as follows: 

1 iIT e-i1q, dcp 
G(z, 1, IX) = - .. 2. .q,' 

27T -IT 1 - (z/2)[(1 - 1X)(e'q, + e-'q,) + lX(e ,q, + e-2, )] 
(Ai) 

In a symmetric one-dimensional random walk, all results can only depend on the absolute distance III 
of the walker from his point of origin. We therefore perform the integration (AI) only for I ~ O. With the 
change of variables 

(A2) 
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(the corresponding change of variables for 1 ~ 0 is S = e+i
",), Eq. (AI) becomes 

i f SIH ds 
G(z, 1, a) = - , 

'TTza {S4 + [(1 - a)/a]sa - (2s2/za) + [(1 - a)/a]s + I} 
(A3) 

where the integral is over the unit circle. The zeros 
of the quartic polynomial in the denominator of the 
integral are easily found because of the symmetry of 
the polynomial coefficients: If Si is a zero of the 
polynomial, then so is l/si' The factorization of the 
quartic polynomial is then reduced to the solution of 
two quadratic equations in two unknowns. We write 

S4 + [(1 - a)/a]sa - (2s2/za) + [(1 - a)/a]s + 1 

= (s - SI)(S - S2)(S - l/s1)(s - l/s2) 

= S4 + 1 - (S3 + S)(SI + S2 + 1/s1 + 1/s2) 

+ S2(SIS2 + SI/S2 + S2/S1 + l/s1s2 + 2). (A4) 

Equating coefficients of powers of s gives the equa
tions 

SI + S2 + 1/s1 + 1/s2 = -(1 - a)/a, 

81S2 + SI/S2 + S2/S1 + l/s1s2 + 2 = -2/za. (A5) 

Solving these two quadratic equations in two un
knowns yields the results of Eq. (10) with Sa = 1/s2 and 
S4 = 1/s1 • 

To determine which of the poles are within the unit 
circle, we examine them in detail only in the neighbor-

hood of z = 1 since in Sec. II we only use the gener
ating function for values of z close to 1. Expanding 
the Si in powers of (l - z), we find 

SI '" -(1/2a){1 + a + [(1 + 3a)(1 - a)]l} 

+ 0(0 - z)/(l - a» > 1 

for 0 ~ a < I, (1 - z)/(l - a) «1. (A6) 

Hence SI is outside the unit circle for all values of a 
in the range of interest for z close to 1. Since S4 = 
l/s1 , S4 is then within the unit circle. For S2 we have 

S2 ro.J 1 + [2(1 - z)/(l + 3oc)]! > 1. (A7) 

Hence S2 is outside the unit circle for all values of a. 
Since Sa = l/s2 , Sa is within the unit circle. Evaluating 
the residues at the poles Sa and S4 then directly yields 
Eq. (9) for G(z, I, a). 

2. Random Walks with Exponentially Distributed 
Step Lengths 

The generating function given by Eq. (67) can be 
evaluated by complex contour integration. By simple 
algebraic manipulation we can write 

1 1" (eae-iq, - I)(ebeiq, - l)e-i1q, 
G(z, I, a, b, Cl , c2) = - , , b ',p ',p d¢>. 

2'TT -" (eae-',p - 1)(eOe'q, - 1) - zc1(e e' - 1) - zc2(e
ae-' - 1) 

(AS) 

For I ~ 0, we make the change of variables 

(A9) 
and Eq. (AS) becomes 

i f sl(ea+b - sea - s-l eb + 1) 
G (z, 1 > 0, a, b, Cl , c2) = - ds, 

- 2'TT ea(1 + ZC2)s2 - (ea+b + 1 + ZC1 + ZC2)s + eb(1 + ZC1) 
(AIO) 

where the integral is over the unit circle. Solving the simple quadratic polynomial in the denominator of the 
integrand, we then have 

where 

(A12) 

For I ::::;; 0, we make the change of variables 

(A13) 
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in Eq. (AB). The result is similar to Eq. (All), with the interchanges a ~ b, c1 ~ Ca, and I ~ -I: 

where 

One can determine algebraically which of the poles 
$+, $_, '+, and, _ are within the unit circle, but it is 
simpler to do it on physical grounds using the following 
relations between the roots: 

(A16) 

If both $+ and $_ were outside of the unit circle, then 
Eq. (All) would yield G (z, I > 0) = 0 and the 
walker could never walk to the right of his point of 
origin, so that this situation is immediately ruled out for 
all positive finite values of the parameters a, b, C1 , and 

(AlS) 

C2' Both $+ and $_ cannot be within the unit circle 
because if this were so, then, from Eq. (A16), '+ and 
,_ would both be outside of the unit circle. This 
would yield G (z, I < 0) = 0 and the walker could 
never reach any point to the left of his point of origin. 
We thus conclude that one of $+ and L is inside the 
unit circle and the other is outside, and similarly 
for '+ and ,_. 

It can be seen from Eq. (A12) that S+ > $_ for all 
values of the parameters a, b, C1 , and C2 with the rela
tion between the parameters given by Eq. (63). We 
wliite 

ea(1 + ZC2) 
(Al7) 

The denominator in this expression is always positive; the quantity inside the radical is positive for all values of 
z of interest as can be seen by rewriting it as follows: 

(ea+ b + 1 + ZC1 + ZC2)2 - 4ea+b(1 + zc1)(1 + ZC2) 

= ([ea(eb _ z) - (1 - z)] - ~ [2ea+b _ ea _ eb)Y 
eO - 1 J 

4c2z(1 - z)eb(ea - l)(ea+b - 1) + 0 > 0 for 0 ~ z ~ 1, (AlB) 

where we have used Eq. (63) to eliminate Cl' Hence 
we conclude that the poles s_ and consequently ,_ 
[see Eq. (A16)] are always the ones within the unit 
circle. Incidentally, we have also shown that s+ , s_ , , + ' 
and ,_ are always real. The integrals in Eqs. (All) 
and (A14) can now be easily evaluated. For I > 0, 
we need only the residue of each integral at s = L; 
for I < 0 we need only the residues at s = ,_; at 
1= 0, an additional pole within the unit circle appears 
at $ = 0 in the third integral of both Eqs. (All) and 
(A14), and so an additional residue must be added. 
Equation (68) for the generating function then 
immediately follows, with $_ == Yl and s+ == Y2' 

e -1 -

APPENDIX B: GENERATING FUNCTIONS IN 
THE PRESENCE OF ABSORBING 

BOUNDARIES 

1. Symmetric Next-Nearest Neighbor Random 
Walks-Absorbing Boundary 

The generating function for a random walk in 
the presence of absorbing boundaries can be related 
to the generating function for a random walk on a 
perfect lattice [Eqs. (9) and (13)] via the difference 
equations satisfied by the P n(l) and the Qn(l). Con
sider a perfect one-dimensional infinite chain (without 
traps) and a random walker who begins his walk 
at I = Is. The probability P n(l - '.) that the walker 
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is at site I after n steps satisfies the difference equation 
[see Fig. 2(a)] 

Pn(l- Is) = tocPn- 1 (1 - Is + 2) 

+ t(1 - O:)Pn-l(l- Is + 1) 

+ t(1 - o:)P n-l(l- Is - 1) 

+ tocPn- 1(l- Is - 2), (Bl) 

with the initial condition 

Po{l- lJ = 0,.1,' (B2) 

and the normalization 

<Xl 

and 1 = -1, 

Qn(2 - 10) = iOCQn-l(4 - 10) 

+ HI - oc)Qn_l(3 - 10) 

+ to - OC)Qn-l(l - 10), 

Qn(1 - 10) = to:Qn-l(3 - 10) 

+ t(1 - oc)Qn_l(2 - 10)' 

Qn(-/o) = !ocQn-l(2 - 10) 

+ t(l - OC)Qn-l(1 - 10) 

+ Qn-l( -/0)' 

(B8) 

Qn(-1 -/0) = to:Qn-l(1 -/0) + Qn-l(-1 -/0)' 

! P n(l - Is) = 1. (B3) Qn(l - 10) = 0, I S -2. 
1=-00 

Multiplying Eq. (Bl) by zn and summing from n = 1 
to n = 00 then gives the difference equation for the 
generating function G(z, 1- IS' oc): 

G(z, 1- Is, 0:) - !o:zG(z, 1- Is + 2, oc) 

- t(1 - oc)zG(z, 1- 18 + 1,0:) 

- t(l - oc)zG(z, I - I" - 1, oc) 

- tlXzG(Z, 1- Is - 2, IX) = 0Z.1. (B4) 
or 

CG(z, 1- Is, 0:) = Oz.z" (B5) 

where Eq. (B4) defines the operator L. The generating 
function for walks on an N-ring satisfies the same 
difference equation: 

CGN(Z, , - 's, oc) 

== G.lli (Z, I - I., oc) - toczG.v(z, I - Is + 2, oc) 

- HI - oc)zGN(z, 1- Is + 1,0:) 

- t(1 - oc)zG.v(z, I - Is - 1, oc) 

- io:zG.v(z, I - Is - 2, oc) = 01•1,' (B6) 

Now consider a random walker starting at I = 10 
with trapping sites at I = 11 and I = 11 - 1. For the 
sake of simplicity in the equations that follow, we 
choose 11 = 0 and include the obvious 11 dependence 
only at the end of the calculation. The choice 10 > 11 
does not affect the generality of the calculation. The 
probability Qn{l - 10) that the walker reaches point I 
on the nth step in the presence of the trapping sites 
satisfies the following set of difference equations 
[see Fig. 2(b)]: 

Qn(/ - 10) = !OCQl1-1(l - 10 + 2) 

+ t(l - 0:)Qn-1(l- 10 + 1) 

+ t(l - 0:)Qn-1(1- 10 - I) 

+ tIXQn-1(l - 10 - 2), I ~ 3, (B7) 

and, since the walker cannot escape from sites I = 0 

The initial condition and normalization are 

Qo(l- 10) = 0,.10' 

! QnCl - 10) = 1. 
1 

(89) 

(BI0) 

Multiplying Eqs. (B7) and (B8) by zn and summing 
from n = 1 to n = 00 yields the following difference 
equations for the generating function F(z, I - 10 , oc) 
defined in Eq. (15): 

CF(z, I - 10 , oc) = H(z, I - 10 , oc). (Bll) 

The operator C is defined in Eq. (B4) and (BS), and 

H(z,l - 10 , oc) 

= 01,10 - F(z, -to, oc) 

x [to:z( 01.2 + 01.-2) 

+ HI - oc)z( bl,l + Cl l .-I ) - zClz•o] 

- F(z, -1 - 10 , oc)(tocz(Cll,l + ClI ._a) 

+ HI - o:)z(ClI•O + 01._2) - ZOI._I]' (BI2) 

Comparison of Eqs. (B5) and (B11) shows that 
G(z, I - Is, IX) is the Green's function required for the 
solution of the inhomogeneous equation satisfied by 
F(z, 1- 10, IX): 

F(z, I - to, oc) = 1: G(z, I - 1', IX)H(z, I' - 10 ,0:). 
I' 

Substituting Eq. (BI2) into Eq. (B13) yields 

F(z, /- 10 , oc) 

= G(z, I - 10 , 0:) - (z/2)F(z, -10 , IX) 

(B13) 

x (IXG(Z, / + 2, IX) + (1 - o:)G(z, / + 1, IX) 

+ (l - o:)G(z, /- 1, oc) + ocG(z, I - 2, oc) 

- 2G(z, /, IX)] - (z/2)F(z, -1 - 10 ,0:) 

x [G(z, I + 3,0:) + (1 - o:)G(z, I + 2,0:) 

+ (1 - IX)G(Z, I, IX) + ocG(z, 1- 1,0:) 

- 2G(z, I + 1, IX)]. (BI4) 
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Via Eq. (B4), this expression simplifies further: 

F(z, 1- 10 , IX) 

= G(z, 1- 10, IX) - F(z, -/0, IX) 

X [(1 - z)G(z, I, IX) - <5 1•0 ] 

- F(z, -1 - 10 , IX)[(I - z)G(z, 1+ 1, IX) - <51._d. 
(BI5) 

Letting 1=0 and 1= -1 in Eq. (BI5), solving 
the two resulting equations for F(z, -/0, rx) and 
F(z,-I-lo,rx) in terms of the G(z,I,IX), and 
substituting back into Eq. (BI5) finally yields 

F(z, 1- 10 , IX) 

= G(z, I - 10 , IX) 

[G(z, 10 , IX)G(Z, 0, IX) - G(z, 10 + 1, IX)G(Z, 1, IX)] 
+ 2 2 [G (z, 1, rx) - G (z, 0, IX)] 

X (G(Z I IX) _ (<5 1•0) ) 

, , (1 - z) 

[G(z, 10 , IX)G(Z, 1, IX) - G(z, 10 + 1, IX)G(Z, 0, IX)] 

[G 2(z, 1, rx) - G2(z, 0, IX)] 

X G z, + 1, IX - --, . ( ( I ) (bf,-l) ) 

(1 - z) 
(BI6) 

In particular, for the first passage time evaluated in 
Eq. (20) we need 

F(z, -10' IX) + F(z, -1 -/o,lX) 

[G(z, -/0 , IX) + G(z, -1 - 10 , IX)] (B17) 
[1 - z][G(z, 0, IX) + G(z, 1, IX)] 

Equation (21) immediately follows for an N-ring with 
traps located at 1= 11 and 1= 11 - 1, with 11 arbitrary. 

2. Symmetric Random Walks with Exponentially 
Distributed Step Lengths-Absorbing Boundary 

Consider a perfect one-dimensional infinite chain 
(without traps) and a random walker who begins 
his walk at I = Is. The probability Pn(l- Is) that 
the walker is at site I after n steps satisfies the difference 
equation 

Pn(i- Is) = tcea - 1) I' e-il-l'jaPn_l(l' - IJ, 
l'=-oo 

(B18) 

where the prime on the sum indicates the omission 
of the l' = I term. The Pn(/- I.) satisfy an initial 
condition and a normalization condition given by 

00 

2 P n(l - Is) = 1. 
I~-oo 

(B19) 

(B20) 

Multiplying Eq. (BI8) by zn and summing from 

n = 1 to 00 then gives the difference equation for the 
generating function G(z, I - Is, a): 

G(z, 1 - I., a) - (z/2)(eU 
- 1) 

co 

X ", e-jl-1'j aG(z I' - I a) = <5 (B21) 
£.., 's' l,ls' 

l'~-oo 

or 

CG(z, I - I., a) = 151,1" (B22) 

where Eq. (B21) defines the operator L. Next, con
sider a random walk on an infinite chain with trapping 
sites at I = 11 - k and I = N + 11 + k for all k ~ O. 
For the sake of simplicity in the equations that follow, 
we choose 11 = 0 and include the obvious 11 depend
ence at the end of the calculation. The walker starts 
his walk at 1= 10, with 1 S 10 S N - 1. The proba
bility Qn(l - 10) that the walker reach point Ion the 
nth step in the presence of the trapping sites satisfies 
the following difference equation: 

N-l 
Qn(l - 10 ) = t(ea - 1) I e-jl-l'j UQn_l(l' - 10 ), 

l'~l 

1 S [S N - 1, 
N-l 

= t(ea - 1) I e-jH'j UQn_l(l' - 10) 
l'~l 

+ Qn-l(l - 10), IsO and I ~ N, 
(B23) 

where we have accounted for the fact that the walker 
cannot escape from the trapping sites. The initial 
and normalization conditions are 

00 

I Qn(l - 10) = 1. 
l~-co 

(B24) 

(B25) 

Multiplying Eq. (B23) by zn and summing from 
11 = 1 to 11 = 00 yields the following difference 
equation for the generating function F(z, 1- 10 , a) 
defined in Eq. (86): 

CF(z, I - 10 , a) = H(z, I - 10 , a), (B26) 

where the operator L is defined in Eqs. (B21) and 
(B22) and 

H(z, I - 10' a) 
o 

= 151,10 - (z/2)(ea - 1) I e-Il-l'1 aF(z, [' - 10 , a) 
l'~-oo 

- (zj2)(eU 
- 1) i: e-ll-1'j aF(z, [' - lo, a), 

1'~N 

1 SIS N - 1, 
o 

= -(z/2)(ea - 1) 2' e- jH jaF(z, /' - 10 , a) 
l'~-oo 

00 

- (z/2)(ea - 1) 2' e-jl-l'j aF(z, /' - 10 , a) 
1'=N 

+ zF(z, I - 10 , a), 1 SO and 1 ~ N. (B27) 
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Equations (B22) and (B26) show that G(z, I - Is, a) is 
the Green's function required for the solution of the 
inhomogeneous equation satisfied by F(z, I - 1o, a): 

00 

F(z, I - 10' a) = 2 G(z, 1 - 1', a)H(z, [' - [0' a). 
!'~-oo 

Substituting Eq. (B27) into Eq. (B28) yields 

F(z, 1 - 10' a) 

= G(z, 1 - 1o, a) 
co 0 

(B28) 

- (z/2)(ea - 1) 2 2 G(z,1 - k, a)e-1k- ml a 
k=-oo m=-oo 

k*m 

x F(z, m - 10 , a) 
00 00 

- (zJ2)(ea 
- 1) 2 2 G(z, 1 - k, a)e-1k- ml 

It 

k=-oo m=N 
k*m 

x F(z, m - 10' a) 

° + z 2 G(z,l - m, a)F(z, m - 10, a) 
m=-oo 

00 

+ z 2 G(z, 1 - m, a)F(z, m - 10' a). 
m=N 

(B29) 

Equation (B21) aIlows us to eliminate the sums over 
the variable k, since 

00 

-(z/2)(e" - 1) 2' G(z, 1 - k, a)e-1k-m! a 
k=-oo 

= Ol,m - G(z, I - m, a). (B30) 

Equation (B29) then becomes 

F(z, I - 10 , a) = G(z, I - 1o, a) 

° + 2 F(z,m -lo,a) 

x [(z - I)G(z, 1 - m, a) + Ol,rn] 
00 

+ 2 F(z, m - 1o, a) 
m=N 

x [(z - I)G(z, 1 - m, a) + Ol,m]' 

(B31) 

We now have the choice to evaluate the sum of Eq. 
(B31) over alI nontrapping sites [Eq. (88)] or over all 
trapping sites [Eq. (90)]. These sums are, of course, 
related via the conservation of walkers expressed by 
Eq. (89): 

° co 2 F(z, 1 - 10' a) + 2 F(z, [ - 1o, a) 
1=-00 I=N 

N-l 

= 1/(1 - z) - 2 F(z, I - 1o, a). (B32) 
1=1 

Although there are fewer nontrapping sites (1 ~ I ~ 
N - 1) than there are trapping sites (l ~ 0, I ~ N), 

it turns out to be computationally more convenient 
to work in terms of the latter. 

If I is a trapping site, Eq. (B31) can be rewritten: 

F(z, l - 10' a)G(z, 0, a) 

= G(z, I - 10, a)/(1 - z) 

° - 2 G(z, 1 - m, a)F(z, m - 10' a) 
m=-oo 

1,...*1 

00 

- 2 G(z, 1 - m, a)F(z, m - 10 , a), 
m=N 
m*l 

1 ~ 0 and 1 ~ N. (B33) 

Using Eq. (74) written in the form 

G(z, 1, a) = fez, a)xlli, III ~ 1, (B34) 
where 

z(e2a 
- 1) 

fez, a) = [2 + z(ea _ 1)]Do (B35) 

and where x and Do are defined in Eqs. (75) and (76), 
we can further rewrite Eq. (B33): 

F(z, I - 10' a)G(z, 0, a) 

= [fez, a)/(l - z)]x1l-lol 

o 
- fez, a) 2 F(z, m - loa)xll-rnl 

m=-oo 
!*m 
00 

- fez, a) 2 F(z, m - 10 , a)x11- ml, 
m=}l 
l*m 

I ~ 0 and 1 ~ N. (B36) 

This equation can now be summed over trapping 
sites I since the right side involves only trivial sums 
of the form Ll X±l. The result is 

[G(z, 0, a) + 2f(z, a)x/(l - x)] 

X C=t./(Z, 1 - 10, a) +1~F(Z, 1- 10' a») 
= [fez, a)/(l - z)](xIO + xN

- 10)!(1 - x) 

+ fez, a)[(l - xN)/(1 - x)] 

X [F(z, -10' a) + F(z, N - 10, a)] 

+ fez, a)[(x - xN)!(l - x») 
1 

X 2 F(z, m - 10 , a)x-m 

tn=-(JJ 

00 

x 2 F(z, m - 1o, a)xm. 
m=N+l 

(B37) 

The last two sums in this equation can be expressed 
in a simpler form by noting that Eq. (B36) gives these 
sums in terms of F(z, -1o, a) and F(z, N - 10' a), 
which are the generating functions for stepping on the 
first traps adjacent to either end of the non trapping 
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interval: 

G(z,O,a)F(z, -lo,a) 

= [fez, a)/(1 - z)]x10 

1 

- fez, a) 2 F(z, m - 1o, a)x-m 

m=-C() 
00 

- fez, a) 2 F(z, m - 1o, a)xm 
m=N+l 

- fez, a)xNF(z, N - 10, a), 

G(z, 0, a)F(z, N - 1o, a) 

= [fez, a)/(1 - Z)]XN- /0 

- fez, a)xNF(z, -10' a) 
1 

- fez, a)xN 2 F(z, m - 1o, a)x-m 
ffl=-OO 

00 

(B38) 

- fez, a)x-N 2 F(z, m - 1o, a)xm. (B39) 
m=N+l 

Solving for 
1 

and 

2 F(z, m - 1o, a)x-m 

m=-oo 

00 

2 F(z, m - 10, a)xm 
m=N+l 

in terms of F(z, -10' a) and F(z, N - 10, a) and 
substituting the result into Eq. (B37) yields 

[G(z, 0, a) + 2f(z, a)xl(1 - x)] 

X (iooF(Z, 1 - 10' a) +JNF(z, I - 10' a») 

= fez, a)xlO + xN- zo(1 + x) + (x - xN) 

(1 - z)(1 - x)(1 + x'~) (1 + xN)(1 - x) 

X [fez, a) - G(z, 0, a)] 

X [F(z, -10' a) + F(z, N - 10, a)]. (B40) 

It now only remains to eliminate [F(z, -10' a) + 
F(z, N - 10, a)] from the right side of Eq. (B40) 
since all other quantities on the right side are known. 

o 00 

2 F(z, 1 - 10' a) + 2F(z, 1 - 10, a) 
1=-00 Z=N 

This can be done by noting that through Eqs. (B26) 
and (B27) we can get an independent relation between 
[F(z, -1o, a) + F(z, N - 1o, a)] and the sums ap
pearing on the left of Eq. (B40); Eqs. (B26) and 
(B27) can be rewritten in the form 

(1 - z)F(z, 1 - 10, a) 
N-l 

= (z/2)(ea - 1) 2 e-(l'-llaF(z, l' - 10, a), I ~ 0, 
. 1'=1 

N-l 
= (z/2)(~ - 1) 2 e-<Z-l'laF(z, l' - 10, a). 1 ~ N. 

Z'=1 

(B41) 
Hence we have 

° (1 - z) 2 F(z, I - 1o• a) 
1=-00 

(1 a) N-l 
Z - e "" -"aF( l' I ) =- ,t.,e z - a 
2 (1 - e-«) 1'=1 • 0., 

(B42) 

(1 - z)F(z, -/0, a) 
N-l 

= (z/2)(1 - ea) 2 e-I'aF(z, I' - 1o, a), (B43) 
1'=1 

00 

(1 - z)2F(z, 1- 10 , a) 
I=N 

(1 a) N-l 
Z - e -Na '" z'aF( l' I ) =- e,t.,e z - a 
2 (1 - e-«) 1'=1 ' 0.. (B44) 

(1 - z)F(z, N - 10, a) 
N-l 

= (z/2)(1 - ea)e-Na 2 el'aF(z, I' - 10 , a). (B45) 
Z'=1 

Equations (B42)-(B45) directly give 

[F(z, -10 , a) + F(z, N - 10, a)] 
o 00 

= (1- e-«) L F(z, 1-10' a) + 2 F(z, 1-10' a). 
1'=-00 I'=N 

(B46) 

Combining Eqs. (B40) and (B46) then finally yields 

fez, a)(xIO + xN- /O)(1 + x) 

[1 - z]{[(1 - xe-a) - xN(X - e-a)]G(z, 0, a) + [(1 + e-«) + xN- 1(1 + 2x - e-a)]xf(z, an 
[G(Z, 10 , a) + G(z, N - 10 , a)](l + x) 

Equation (91) immediately follows upon defining the 
absorbing boundaries to begin at I = 11 and I = 

N - 11 for arbitrary 11 . 
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Methods are discussed for discovery of physically or mathematically special families of exact solutions 
of systems of partial differential equations. Such systems are described geometrically using equivalent sets 
of differential forms, and the theory derived for obtaining the generators of their invariance groups
vector fields in the space of forms. These isovectors then lead naturally to all the special solutions dis
cussed, and it appears that other special ansatze must similarly be capable of geometric description. 
Application is made to the one-dimensional heat equation, the vacuum Maxwell equations, the 
Korteweg-de Vries equation, one-dimensional compressible fluid dynamics, the Lambropoulos equation, 
and the cylindrically symmetric Einstein-Maxwell equations. 

I. INTRODUCTION 

Exact solutions of the sets of coupled nonlinear 
partial differential equations of physics (fluid physics, 
general relativity, etc.) are of great value for the phys
ical insight they can give into extreme cases not 
susceptible to numerical or approximate treatment. 
The search for such solutions is, however, not a 
systematic process, but depends in practice on intuitive 
skill and physical or geometrical analogy for the 
divination of successful ansatze. In first attempt at a 
more systematic methodology, we have considered, 
as a practical process of applied mathematics, the use 
of the generators of the invariance group of a given 
set of equations. Our method for finding these appears 
to be new; it is based on Cartan's geometric formula
tion of partial differential equations in the language 
of exterior differential forms, and introduces the fields 
of isovectors which generate the invariance trans
formations. With these, we indeed find certain 
specializations of the set considered, which may be 
soluble exactly; in particular we refer to classes of 
so-called similarity solutions and to algebraically 
special solutions based on invariant subspaces. Other 
methods for systematic discovery of exact solutions 
must also have close connections to this underlying 
group structure. 

In the following, we sketch the method and illustrate 
use of it by application to a number of simple ex
amples, including the vacuum Maxwell equations, the 
one-dimensional heat equation, and some simple 
nonlinear cases from fluid dynamics; and also we 
relate it to "solution generation" procedures which 
were previously applied by one of the authors to a 
specialization of the general relativistic Einstein
Maxwell equations. We trust that its usefulness in 
other such nonlinear contexts will become evident. 

The basic work on invariance groups of partial 
differential equations has been well established by its 

originators, especially Lie. l It has been used recently 
by Bluman and Cole2 in discussing very general 
similarity solutions of the one-dimensional heat 
equation. We present here what we believe to be a 
more useful, intuitive, and concise formulation in the 
language of differential forms. Cartan's geometric 
theory of partial differential equations3 has been 
expounded by Slebodzinski,4 to whose terminology 
we remain close, and by Choquet-Bruhat5 ; a careful 
survey and bibliography of modern work and formula
tions is due to Hermann.6 We extend their geometrical 
picture to emphasize the role of the isovector fields, the 
generators of geometric transformations with suitable 
algebraic invariance properties. These isovector fields 
generate the invariance group, or isogroup, and in turn 
lead to varieties of special solutions. It seems to us that 
such an approach to partial differential equations is so 
deep that all successful anslitze for special solutions 
must, in it, take their most transparent form, as 
algebraic criteria on geometric objects in general 
spaces. 

II. EXTERIOR DIFFERENTIAL FORMS 

We first recapitulate the notation and basic identities 
of the calculus of exterior differential forms. In a 
differentiable manifold of n dimensions, we regard 
a p-form w either as an index-free notation for a 
p-vector (or completely anti symmetric covariant pth
rank tensor) W"l ... ". or as the value (or scalar magni
tude) of this p-vector when contracted with a p-foId 
infinitesimal (simple, contravariant, completely anti
symmetric) tensor of extension describing an elemen
tary cell of a p-dimensional submanifold, 

W"r .. "" d~["l ... d~"pl.7 
1 p 

Modern expositions equivalently treat I-forms as 
elements of the cotangent space at a point of the 

653 
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manifold, i.e., as mappings from the tangent space 
into the reals. 5 •6 •8 

At each point of the manifold, the forms have a 
Grassmann algebra (with noncommutative anti
symmetrized outer multiplication denoted by J\) over a 
2"-dimensionallinear vector space. Over the manifold 
we may use the three operations of exterior differentia
tion, d, of contraction with a vector field V (a contra
variant vector Vi'), V ..J w, and of Lie derivative with 
respect to V, £v w. These give forms of rank p + 1, 
P - 1, and p, respectively. The following results are 
to be found in the references, or may easily be written 
from the equivalent operations of the tensor calculus.7 

Let w be a p-form, (J a q-form, f a O-form, c a 
constant, and V and W vector fields. Then 

w J\ (J = (-1)P'l(J J\ W, 

dew J\ (J) = dw J\ (J + (-l)Pw J\ dfJ, 

ddw = 0, 

dc = 0, 

(V ..J + W..J)w = V ..J w + W ..J w, 

(fV) ..J w = f(V..J w), 

V ..J (w J\ (1) = (V ..J w) J\ <1 

+ (-l)Pw J\ (V ..J (1), 

£ w = v..J dw + d(V ..J w), 
v 
£ f = v..J dj, 
v 

£dw=d(£w), 
v v 

£ (w J\ (1) = (£ w) J\ ()' + w J\ (£ (1), 
v v v 

;(w..J w) = [V, W]..J w + w..J (;w). 

(1) 

(2) 

(3) 

[V, W] is the commutator, or Lie product, of these 
vectors: It is the contravariant vector field £v W". In 
the following, we wiII usually omit the exterior 
product operator J\. 

III. CARTAN'S THEORY 

Cartan3- 6 has discussed criteria for the equivalence 
of a given set of partial differential equations (in 
n - p dependent variables and p independent vari
ables) with a closed set of differential forms on an 
n-dimensional manifold. The latter set is the basis of 
a differential ideal of the Grassmann algebra of forms 
on the manifold. Any set algebraically equivalent to 
the set generates the same ideal, and could as well 
serve as the basis. An integral manifold of the ideal 
is a subspace, the extension elements of which annul
give zero values to-all forms in the ideal, or the 

section7 of which with the ideal gives forms, in the 
subspace, identically zero. 

In tensor notation, in an n-dimensional manifold 
spanned by x", a p-dimensional subspace is described 
by n parametric equations x" = X"(yA), A = 1,' .. ,p. 
The yA can be adopted as coordinates in the subspace. 
We can apply the section operators AA" = ax"/ayA to 
covariant quantities, for example, vectors, ~'" 

obtaining sectioned covariant quantities <$ A == AA"~", 
etc., in the subspace, i.e., quantities which transform 
properly under transformations yA = yA(jjA). The 
sectioning of forms is equivalently defined. If section
ing a form ~ gives a form ~ which is identically zero, 
any extension element of the subspace must annul ~, 
and conversely. 

If an integral manifold of dimensionality p exists, 
and if, in it, p of the variables may vary freely (i.e., 
may also be adopted as the coordinates in the mani
fold), it amounts to a functional specification of the 
other n - p variables-the former are then called inde
pendent, and the latter dependent, variables. Such an 
integral manifold in the n-space can geometrically 
represent a solution of the original set of partial 
differential equations. In fact, denoting the n - p 
variables by Zi, i = I, ... , n - p, and the p variables 
as x A , A = 1, ... ,p, one must be able to reobtain the 
original partial differential equations by substituting, 
into the set of forms in n dimensions, the relations 
sectioning those forms into the p-manifold: 

dx-A = dxA, d-i az
i 

d A Z = axA x , 

and then requiring the coefficients of the forms 
dxA

, dxA J\ dx E
, etc., to vanish. By this procedure we 

impose the independence of the variables x A on the 
set of forms. 

The integral manifolds of a differential ideal are 
classified by Cartan as (1) general or (2) singular. The 
singular manifolds are poorly understood as a class, 
and must be investigated by ad hoc methods. The 
general manifolds are those which can be obtained by 
a step-by-step procedure of Cauchy-Kowalewski 
integrations, beginning with one-dimensional integral 
manifolds and giving a hierarchy, or chain, of such, 
of every dimensionality up to the maximum (or genus) 
g. In a beautiful, systematic, theoretical development, 
Cartan gives the local algebraic existence criteria 
for these general solutions; in particular, if, for a 
dimensionality p ~ g, these criteria show the existence 
of general integral manifolds in which the variables 
x A and their differentials dx A can freely be chosen, the 
ideal is said to be in involution with respect to the 
X A •3•4 
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When one imposes independence of the variables 
xA. on a set of forms, if it is not already in involution 
with respect to these variables, he perforce searches 
for a class of singular integral manifolds. If they exist, 
it is possible by prolongation-the introduction of 
more variables and more forms-to derive a new set 
which is in involution with the required set XA..3.4.7 

In this way one discovers variables, in terms of which 
the desired solutions are obtainable from appropriate 
Cauchy data. We, however, have been more concerned 
with the converse problem: given a set of physicaIIy 
motivated partial differential equations, to write an 
equivalent set of forms which is in involution with 
respect to the independent variables (i.e., a set whose 
general integral manifolds are the desired solutions). 
In all the cases below this has been achieved, as we 
have verified by detailed application of Cartan's 
criteria. (There is, however, one delicate point. If the 
ideal of forms does not have the additional property 
of being complete,3 it can happen that the ideal may 
be augmented with some additional forms, giving a 
larger ideal that still leads to all the solutions of the 
same set of partial differential equations.) Indeed we 
believe involutory sets to be achievable for the partial 
differential equations of any well-set physical theory. 
All this may well be the mathematical basis for the 
otherwise somewhat mysterious need for introduction 
of certain sets of "extra" variables in physical theories 
(such as in general relativity, where we refer to the 
Riemann tensor components) whose partial differ
ential equations would seem otherwise strangely 
incomplete. Further insight into this remark comes 
also from consideration of the structure of Maxwell's 
equations, as we will discuss later. 

With the involutory property, then, we regard the 
differential ideals as precisely equivalent to-or 
giving a geometric form to-the structures of the 
equivalent sets of partial differential equations 
immediately derivable from them. Both the general 
and singular solutions of a set of partial differential 
equations must partake of the invariance group of the 
collection of geometric objects described by the 
equivalent ideal, and it is such groups and their gen
erators that we investigate and use to discover special 
solutions. 

IV. THE ISOGROUP 

We write a set of forms in n-space as Wi' i = 1, ... ; 
the ith form Wi is taken to be of degree Pi' We then 
require that the ideal be invariant under the continuous 
dragging transformation (or mapping, or diffeo
morphism) generated by the vector field V, by writing 

(4) 

The sum includes only forms Wj for which pj ~ Pi 
(thus including Wi itself). AI is an arbitrary form of 
degree Pi - Pi' V is a contravariant vector field in 
the space of n dimensions, and is to be considered as a 
function of all n variables (i.e., n - P "dependent" and 
P "independent"). 

A set of Lie increments E £V Wi represents simul
taneous infinitesimal changes in all the objects Wi 

equivalent to the "active" coordinate change, or point 
transformation, 

'x ll = Xll + EVil (E infinitesimal), (5) 

of the background coordinatized n-manifold. Requir
ing these increments of the set of Wi to produce no 
change in any of the integral manifolds (which clearly 
preserves the form of the original system of partial 
differential equations) is thus the same as having the 
equivalent active point transformation take all 
solutions simultaneously into other solutions. Clearly, 
the most general way to achieve the former is with 
Eq. (4), which asserts that the increments of Wi are in 
the ideal, and conversely; in Cartan's terminology, the 
Wi and the transformed Wi are algebraicaIly equivalent 
sets and the ideal is unchanged. 

To explicitly find the invariance group, we expand 
Eq. (4) in terms of basis Pi-forms (products of Pi 
I-forms, usually the dxi ). This is done with the aid of 
the identities for forms (1)-(3). We then equate 
coefficients of the basis Pi-forms to zero and alge
braically eliminate the components of the At. This 
yields a system of linear partial differential equations 
for the components of the V, which can usually be 
solved in a straightforward fashion. 

We denote a solution Van isovector of the ideal and, 
finding all such, consider the transformation group, or 
isogroup, which they generate, and its Lie algebra. If 
the N, say, distinct isovector fields are labeled by a 
subscript A, B = 1, 2, ... , N, the structure constants 
of the group follow from 

One may ask: Cannot this all be done in indicial 
notation without ever introducing forms.? The answer 
is, of course, yes; in fact, invariance groups have been 
computed traditionally in essentially this way.1.2 
However, it seems to us in practice that the use of 
forms usually enables calculation to be carried out 
more quickly and easily and that recognition of the 
n-dimensional geometric structures involved can be of 
great heuristic value in discovering special classes of 
solutions. 
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V. SPECIAL SOLUTION SETS 

We now mention several ways of using the iso
vectors to generate additional forms which, when 
adjoined to the original set, give an augmented ideal 
whose solutions are in some sense special: A subset of 
the general solutions of the original set. It can happen 
that such a restricted problem is soluble in exact terms, 
whereas the general problem is not. It can also happen 
that a suitably restricted problem may have con
siderable physical interest by itself. It seems that any 
way of finding suitable restrictions-i.e., discovering 
augmented ideals which still have nonempty sets of 
solutions-must closely depend on similar uses of the 
isogroup. 

(1) Invariant subspaces (or varieties) of the iso
group are described by degeneration of the rank of 
the matrix of V~. Here fl = 1, ... , n are labels of 
coordinates in the space of forms, and A = 1, ... , N 
are labels of the isovectors. These varieties are taken 
into themselves by the transformations of the group9; 
hence any integral manifold specialized to be immersed 
in such a variety continues to be so immersed when 
transformed-there then being a set of such special 
solutions. They annul an augmented ideal including 
the O-forms of the invariant variety and their exterior 
derivatives. For reasons that will become apparent 
when we discuss Maxwell's equations, we can call 
such solutions "algebraically special." 

(2) A generalization of this is to search for all other 
sets of forms which, when adjoined to the original 
ideal, give an augmented ideal which (a) is still in 
involution with respect to the desired independent 
variables (this, however, may be achievable by 
prolongation) and (b) has an isogroup which includes 
all the original isovectors and so is at least as large 
as the original isogroup (an exception to this last 
could be made, if physically a subgroup of the original 
isogroup were deemed most significant and alone 
were required to be preserved). How to achieve this 
in general, by systematic search, is not clear to us. 
We find an example of such a process, however, in the 
discussion of the vacuum Maxwell equations. 

One possible way to achieve the above is clear if the 
Lie algebra of the isogroup (or one of its subgroups) 
has an ideal-i.e., if the isogroup has an invariant 
subgroup. The ideal of forms then may be augmented 
by contractions of some or all of them with all the 
isovectors in the ideal of the isogroup, and we will 
show that the resulting augmented ideal of differential 
forms will have an isogroup certainly not smaller, 
and even perhaps larger, than the original isogroup 

(or subgroup). The subset of solutions thus singled 
out may have quite interesting additional physical 
symmetries. Let VA represent the isovectors from the 
ideal of the isogroup and Vbe a general isovector. From 
the original ideal of forms, we choose a closed set Wi 

such that £v Wi is in the ideal Wi (this may be the entire 
original ideal), and augment the ideal with the con
tracted forms WAi == V A ~ Wi' The augmented ideal 
is still closed, since from Eq. (3) 

dWAi = £ Wi - VA ~ (dOli); (6) 
rA 

the first term on the right is in the ideal of Wi' since 
VA is an isovector, and the second term is clearly in 
the augmented ideal. To prove our assertion about the 
isogroup, then, consider [using Eq. (3)] 

£WAi = £ Jl.4 ~ Wi = [V, JI.,d ~ Wi + VA ~ £Wi ; 
J' v r 

(7) 

since VA is an ideal, [V, VA] belongs to VA; by 
hypothesis £V Wi is in Wi' so that the second term on 
the right side belongs to W Ai and so that any V will still 
be an isovector of the augmented set. 

(3) If we are willing to search for a class of solutions 
no longer invariant under the isogroup, we can, from 
a single isovector V, taken from the general solution 
of the linear equations (4), obtain a set of forms 

ai = V ~Wi' 

(It should be noted that, since such a V is a super
position of the generators, it contains N arbitrarily 
chosen parameters.) Then 

£ at = £ V ~ Wi = V ~ £ Wi 
r v v 

= V ~ L Aiw; 

=L[V ~A:]W;+L(-l)1>i-PiA:a;. 

Thus, since the ideal Wi is invariant under V, the 
augmented ideal {Wi' ai} is also invariant under this 
particular V (but not under the rest of the isovectors). 
This suggests that we may annul the augmented ideal 
{Wi' a i } to find (a nonempty) class of special solutions 
of the original equations. By imposing independent 
variables one recovers the original set of partial 
differential equations from the Wi' plus an auxiliary 
set from the (Ii' Of course, one can too severely limit 
the solutions by imposing arbitrary auxiliary con
ditions; but by imposing just the set found using one 
particular, but arbitrary, isovector in the above 
manner, we find the most general so-called "similar
ity" solutions of the original set. They functionally 
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depend on the ratios of the N parameters in V. This 
technique is especially appropriate when one is also 
dealing with boundary conditions invariant under a V. 

(4) Finally, this last method suggests a sometimes 
useful generalization of the isovectors themselves. In 
the typical case we have considered, the isovectors are 
first found from the original set of forms and then are 
contracted with these forms to get new forms. How
ever, these new forms could have been included as 
part of the original set, although their exact expression 
was not known since V has not yet been found. Thus 
we can augment the original set of forms with con
tracted forms constructed with a generalized iso
vector-one which itself preserves only the augmented 
ideal: 

£ Wi = I A:Wi + I.uW ---1 w j • (8) 
v i 

The #1 are forms of degree Pi - pj + 1. It appears 
possible to make a variety of restrictive choices of the 
.uf; in fact, leaving them too free can result in V being 
undetermined. We are not convinced that any class of 
solutions defined in this way will have much intrinsic 
physical interest, but if boundaries are also involved, 
this procedure may be appropriate. Indeed, we will 
show later that certain recently found "nonclassical 
similarity solutions" discussed by BIuman and Cole 
can be constructed in exactly this way. 

VI. EXAMPLES 

A. The One-Dimensional Heat Equation 

We have 

"Pxx = "Pt· (9) 

Here and in the rest of the section, lower case 
Latin subscripts denote partial differentiation, as does 
subscript "P. 

To convert this to a set of differential forms, we 
first reduce it to a first-order set by defining new 
variables: u = "Pt and y = "Px' The given equation is 
now Yx = u. 

The set to be annulled has one I-form and two 
2-forms: 

oc = d"P - u dt - y dx, 

doc = -dudt - dydx, (10) 

fJ = u dx dt - dy dt. 

The number of variables n = 5: t, x, "P, u, and y. By 
taking the outer derivative of fl, the derived form is 
found to be in the ideal of oc, doc, and fl, so that the set 
is closed. 

The set is in involution with respect to x and t, and 
gives back the original partial differential equations if 
we impose independence of these variables, requiring 

the sectioned forms to be annulled by elements of a 
2-manifold in which dx and dt are independent forms. 
By substituting du = Ux dx + Ut dt, etc., into oc, this 
gives u = "Pt and y = "Px' Next, if we section doc, we 
have 

da = -(Ut dt + Ux dx) dt - (Yt dt + Yx dx) dx 

= (Yt - u,J dx dt, 

so that annulling gives Y t = ux , the correct integrability 
condition. Finally, sectioning fJ yields 

p = (u - yx)dxdt, 

so that annulling gives u = y", as above. 
We now find the isogroup by requiring that the Lie 

derivatives of oc, doc, and fl with respect to a vector 
field V be in the ideal of oc, doc, and fl. The general 
isovector V is to be considered a function of all five 
variables. We give the calculation in detail to demon
strate the method. We consider first 

(11 ) 

No other term on the right-hand side is possible since 
oc is the only I-form. We treat this with a trick (which 
can be used when there is a single I-form). Write 

F= V ~ oc. (12) 

From Eq. (3) we have 

£oc= V ~doc+d(V ~oc). 
v 

(13) 

Expanding on the basis of I-forms d1jJ, dt, du, dx, and 
dy, we have 

- VU dt + VI du - vY dx + V:l: dy 

= A(d1jJ - u dt - y dx) - Ft dt 

- F", dx - F u du - Fy dy 

-Ftpd1jJ. 

From Eq. (12) we get 

F = Vtp - uVt - yV:l:. 

We equate coefficients of each basis form to zero, 
eliminate A, and solve for the Vi: 

V'" = -F1I • vt = -Fu, 

VU=Ft+uFtp, VU=F",+yF~" (14) 

V~' = F - uF u - Y Fy . 

If we take the exterior derivative of Eq. (11), we get 

£ doc = (dA)OC + ). doc; 
v 

(15) 

thus £1' doc is already in the ideal. We need only 
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consider £v (3 to complete the calculation. We put 

£ (3 = ~(3 + o>rx - ~ drx, (16) 
r' 

where $, ~, and OJ are arbitrary 0-, 0-, and I-forms, 
respectively. We may require that OJ have no d"P term 
without loss of generality. Expansion ofEq. (16) yields 

V" dx dt + u dVx dt + u dx dVI - dVY dt - dy dVI 

= ~(u dx dt - dy dt) + ,(du dt + dy dx) 

+ (A dt + B dx + C du + D dy) 

x (d1p - u dt - y dx). (17) 

~, " A, B, C, and D are arbitrary and are to be 
eliminated. The expression dV', i = x, t, y, is here 
just an abbreviation for V; dt + V~ dx + V; d1p + 
V~ du + V; dy. The equations obtained by equating 
coefficients of all 2-forms to zero are 

V" + lI(V~ + vD - V x = ~u + Ay - Bu, 

uV~ = V~ = , - Cu, 

uV~ - V~ - V; = -~ - Du, 

uV~ = Cy, uV~ + V~ = -, + Dy, 

V~ = 0, -uY~ + y~ =A, 

u Y~P = E, 0 = C, - V~, = D. 

Solutions of Eqs. (14) and (18) now yields 

Vt = 2kst
2 + 2k4t + kl' 

Y'" = 2kstx + k4x - 2kst + k2' 

V" = (-~k6X2 + k5X - Skst + kg - 2k4)u 

(18) 

+ 2(ks - ksx)y - ks"P + gt, (19) 

V y = (-tksx
2 + k5X - 3kst + kg - k4)y 

+ (ks - ksx)1p + g"" 

yV' = (-tksx2 + kfiX - kst + kg)"P + g, 

where g = g(t, x) satisfies gXT = gt. The ki' i = 
1, ... , 6, are constants. 

We have six parameters and one (somewhat) 
arbitrary function. If we set all but one of these equal 

to zero, the remaining one describes an independent 
generator of the invariance group. There are thus 
seven separate generators (the last one actually com
prising an infinite family of generators), which we 
summarize in Table I. Rows 1-6 are characterized 
by k l _ 6 , row 7 by g. A description of each type of 
transformation is provided where feasible. It should be 
noted that this particular group has been known for 
many years. 2 

Generators 1-4, and7 are in fact obvious from direct 
inspection of the heat equation; 5 and 6, however, 
might not have been anticipated. Generators 3 and 7 
result from the linearity of the equation: It is an 
advantage of the present approach that even were the 
linearity not apparent, it would become so through 
the isogroup structure. 

Similarity solutions of the heat equation are found 
by taking one particular (but arbitrary) generator V 
of the isogroup (omitting No.7, however) and defining 
new forms: 

F = V -.J rx, () = V -.J drx, (f = V -.J (3. (20) 

We ask that the solution 2-manifolds annul these 
forms as well as rx, drx, and (3. 

The adjoined O-form F is the same F appearing in 
Eq. (12) (but now for our particular V). Thus the 
similarity solution 2-manifold is described by setting 

F = VIp - vt"Pt - V"'''Px = 0, (21) 

where we have substituted u = "Pt and y = "P"" 
relations true on that manifold. As might be expected, 
annulling () merely yields of/at = of/ax = O. Finally, 
annulling (f yields the known equations u'" = Yt and 
y", = u. 

From Eq. (19), u and y do not appear in vt, V"', and 
Vip, so that we have a quasi linear partial differential 
equation for "P as a function of x and t, Eq. (21), to be 
solved in addition to the original heat equation. The 
general solution is of the form "P = H(x, t)G('fJ), 
where 'fJ(x, t) is a "similarity variable" and G('fJ) is 
arbitrary. Hand 'fJ involve the n - 1 = S ratios of 

TABLE I. Isogroup of IJ! •• = IJ!, (u = IJ!" Y = IJ!.). 

No. V' V' Vip vu V' Description 

1 1 0 0 0 0 time translation 
2 0 1 0 0 0 space translation 
3 0 0 IJ! u Y IJ! scale change 
4 2t x 0 -2u -y t, x scale change 
5 0 -2t XIJ! 2y + xu IJ! +xy Galilean transformation 
6 2t" 2xt -(lx" + t)1J! -!x'u - 5tu -!x'y - 3ty 

- 2xY-1J! -XIJ! 
7 0 0 g g, g. addition of arbitrary 

solution 
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the parameters in V. Substitution into the original 
heat equation results in an equation for G. Explicit. 
forms for 'Yj, H, and G are given by Bluman and Cole, 
in a recent careful discussion of similarity solutions of 
this equation. 2 

Finally, as an example of similarity solution by 
generalization of isovectors, we can modify Eq. (16) 
by writing 

£{J = -, dr;. + ~(J + wr;. + TO. (22) 
v 

We have added an additional term TO = TV .-J dr;., 
where T is an arbitrary I-form, and wish to solve this 
equation for V-now a generalized isovector. Equa
tion (11) for r;. we preserve unchanged. We use Eqs. 
(14), as before, for the Vi in terms of F. Elimination 
of ~, " w, and T produces one equation for F: 

0= FuiF", + yF", + UFy)2 - 2Fu(F., + yFv' + uFy) 

x (uFUY + yFu", + Fxu) 

+ F~( -Ft + Fx., + 2uF"y + 2yFxlp + 2uyFyV) 

+ u2Fyy + iF Ip~.). (23) 

From any solution of this equation, we can find the 
five Vi. We must realize, however, that in general Vt, 
Vx, and V'" now will be functions of u and y and that 
Eq. (21) will now give a nonlinear equation for 1jJ. 

Here we will content ourselves by further arbitrarily 
requiring vt, Vx, and Vip to be independent of u and y. 
This requirement enables us to restrict F and to 
break up Eq. (23) into parts. If we write Vx/VI = A 
and V"'/vt = B, then we can show that A = A(x, t), 
B = C(x, t)1jJ + D(x, t), and 

At + 2AA", - Ax., = -2C"" 

Ct - Cx ", + 2CAx = 0, (24) 

Dt - Dxx + 2DAx = O. 

These equations were obtained by Bluman and Cole 
in another manner, which they denoted a "non
classical" approach to similarity solutions. We have 
obtained such solutions here by a more geometrical 
method. Any solution of these equations, coupled with 
the differential equations dx/dt = A and d1jJ/dt = B, 
yields a generalized similarity solution. The "classical" 
case is the special case Ax", = O. 

B. The Vacuum Maxwell Equations 

As for so many other considerations of theoretical 
physics, these seem to furnish the illustration par 
excellence for our present method. We are presented 
with a set of eight partial differential equations in 
n = 10 variables (n - p = six dependent E E E , x' Y' z' 

Bx. B'II' Bz;p = four independent. t, x,y, z). We first 

label these in a straightforward way as X4, x5 , x6 , x', 
x8 , x9 and xo, xl, X2, x 3 , and clearly can write a set of 
eight four-forms (in a general 10-dimensional mani
fold) 

dx4 dx1 dxo dx2 + dx6 dx3 dxo dx2 + dxB dx3 dx1 dx2, 

dx5 dx2 dxo dx3 + dx4 dx1 dxo dx3 + dx9 dx1 dx2 dx3
, 

dx6 dx3 dxo dx1 + dx5 dx2 dxo dx1 + dx7 dx2 dx3 dx1, 

dx7 dx1 dxo dx2 + dx9 dx3 dxo dx2 - dx5 dx3 dx1 dx2, 

dxB dx2 dxo dx3 + dx7 dx1 dxo dx3 - dx6 dx1 dx2 dx3 , 

dx9 dx3 dxo dx1 + dxB dx2 dxO dx1 - dx4 dx2 dx3 dx1, 

dx7 dx2 dx3 dxo + dx8 dx3 dx1 dxo + dx9 dx1 dx2 dxo, 

dx4 dx2 dx3 dxo + dx" dx3 dx1 dxo + dx6 dx1 dx2 dxo, 

(25) 

from which, by imposing independence of xO, xl, X2, 

and x3, we can immediately derive the original partial 
differential set. This set of forms, however, is not in 
involution according to Cartan's criteria, so that the 
desired solutions are singular integral manifolds. 

It is interesting that the first six of these 4-forms, 
however, do form an involutory system with respect 
to xO, xl, X2, and x3

• The isogroup of this system has 10 
parameters in addition to the infinite part expressing 
the linearity. The corresponding 10 isovectors generate 
transformations of time translation, space-time scale 
change, three-dimensional rigid spatial translation 
and rotation, and scale change and duality rotation of 
the E and B fields. 

Adjoining the last two forms to the set does not 
eli~i~ate the possibility of any solution-as arbitrary 
addItIOnal forms might. Rather, a subset of solutions 
is selected-viz., the singular solutions describing 
vacuum Maxwell fields-and we will next see in detail 
how much broader is the invariance group of this 
more restricted set. The last two forms are thus in an 
explicit sense compatible with the first six-this is an 
example of discovery of special subfamilies of solu
tions, described by an augmented set of forms. This 
particular example is, we realize, already well known 
as the fact that the vanishing of the divergences of 
E and B need only be required on a spacelike surface: 
The curl equations then ensure it throughout. 

The set (25) can obviously be systematically 
completed and generalized to n = 12 by cyclically 
adjoining terms in two new variables, say, E t = XIO 

and B t = Xll, e.g., to the first form add 

dx10 dx3 dx1 dxo, 

to the fourth dxll dx3 dx1 dxo, to the seventh 

dx10 dx1 dx2 dx3 • 
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etc. The resulting set is in involution, and in fact 
expresses Dirac's electron theory, for mo = 0 and no 
applied field. lo The electron mass and applied field 
terms can be included as coefficients of another term 
dxo dxl dx2 dx3 adjoined to each form, without affect
ing the closure and involutory properties. We hope to 
treat more such general sets in a future paper. 

To find the invariance group of the Maxwell set (25), 
we find it more convenient to consider an ideal based 
on the two 3-forms in 10 dimensions 

0( == dx4 dxl dxo + dx5 dx2 dxo + dx6 dx3 dxo 

+ dx7 dx2 dx3 + dx8 dx3 dxl + dx9 dxl dx2
, 

fJ == dx7 dxl dxo + dx8 dx2 dxo + dx9 dx3 dxo 

- dx4 dx2 dx3 - dx5 dx3 dx l - dx6 dxl dx2• 

(26) 

The eight 4-forms first considered are in the ideal of 
0( and fJ. Moreover, 0( and fJ are in involution with 
respect to xO, Xl, X2, and x3, and so it is their general 
integral 4-manifolds which give vacuum Maxwell 
fields. Form equations equivalent to 0( and fJ have been 
given frequently in recent literature,l1 but it has not 
perhaps been fully emphasized that these are best 
regarded as geometrical constructs in IO-dimensional 
space. We are not using moving orthogonal frames in a 
Minkowski 4-space; indeed this last only emerges as 
a part of the group structure which we find for 
solutions, and is not given a priori. 

To simplify the algebraic labor, we take advantage 
of the permutation symmetry of 0( and fJ in dxl

, dx2
, 

and dx3 to introduce a complex 3-vector notation (but 
with no presumption of any sort of 3-metric, the dot 
product simply being notation for a sum of products 
from 1 to 3). We define the following quantities: 

b = E + iB, 

Y = 0( + ifJ, (27) 

r = Ix + jy + kz, 
and will work with complex 3-vector differential forms, 
using all the usual identities of vector-dyadic analysis, 
but suitably modifying them to take account of the 
noncommutativity of differential forms. For example, 
for such forms we have 

dr x dr = 2(1 dy dz + j dz dx + ({ dx dy), 

instead of zero. 
Bearing these considerations in mind, we can write 

the complex 3-form Y as 

y = db • (dr dt - ti dr x dr). (28) 

The 4-dimensional integral manifolds which annul this 

are solutions of the Maxwell partial differential 
equations for vacuum. The isovector equation is 

£ Y = flY + vy*, 
v 

(29) 

where the star represents a complex conjugate and fl 
and v are unspecified complex O-forms. The variables 
are t, r, b, and b*. We write the isovector components 
as T = vt, R = Vr

, and H = Vb. R and Tare real, H 
complex. Then expansion gives 

dH· (dr dt - ~i dr x dr) 

+ db· (dR dt + dr dT - i dR x dr) 

= fl db . (dr dt - ii dr x dr) 

+ v db* . (dr dt + ii dr x dr). (30) 

In order to use this equation, we need several 
algebraic identities involving vectors, dyadics, and 
differential forms, which are presented here without 
proof. In the following, A is a vector O-form, M is a 
dyadic O-form, w is a vector I-form, m = tM x I 
(the antisymmetric part of M expressed as an axial 
vector), and I is the unit dyadic: 

2w(A • w) = A x (w x w), 

(w· M) x w = i[1(Tr M) - M] • (w x w), (31) 

w • M • w = m • w x w, 

w· M· w x w = 2(Tr M)WI W2W 3 . 

V will represent the operator DiO/OXi ; Vb will represent 
DiO/ohi • The Di are the orthonormal basis t, j, {{. 

We consider first the thh* terms, which are 

db· (db* . Vh.R) = 0 
or 

db*·Vb.R.db=O. 

We may remove the db* and the db-the coefficients 
are separately equal to zero-to obtain 

Vb.R = 0 
and 

(32) 

by a complex conjugation. Thus R = R(t, r) only. The 
rbb * terms now are 

(db· dr)(db* . Vh. T) = 0, 
so that 

Vb.T = VbT = O. (33) 

Thus T = T(t, r). With these restrictions, the thh 
and rbh terms vanish. 

The h*rt and h*rr terms yield 

Vb.H = '1'1 = -'1'1. (34) 
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Thus v = 0 and H = H(t, r, b). The rrr term is 

-ii dr· VH· dr x dr = 0, 
which yields 

V·H=O. 

The rrt terms, after dropping dt, are 

dr . VH . dr - liH t dr x dr = 0 
or 

tV x H· dr x dr - tiHt . dr x dr = 0, 

so that 
v x H - iHt = O. 

The trb terms yield 

VbH + RV + ITt + iR t x I = ,ul, 

and the rrh terms give 

(35) 

(36) 

(37) 

VbH + iVT x I - VR + (V. R)I = ,ul. (38) 

Subtraction of these equations results in 

RV + VR + i(Rt - VT) x I + I(Tt - V· R) = o. 
(39) 

Take real and imaginary parts: 

Rt = VT, (40) 

RV + VR = (V· R - Tt)l. (41) 

The trace of the second equation gives 

V· R = 3Tt • (42) 

These equations can be recognized as conformal 
Killing equations in a 4-space with 3-1 signature; the 
solution depends on 15 parameters and is 

R = at2 + bt + c + d x r + (2et + f)r 

+ 2(a. r)r - ar2, 

T = r· (2at + b) + e(r2 + t2) + ft + g; (43) 

a, b, c, d, e,f, and g are real constants. 
It is now easy to integrate for H; the result is 

H = b x u + hw + l(t, r), (44) 
where 

u = 2r x a - d - i(2at + b + 2er) 
and 

w = ,u - 2(2a • r + 2et + f)· 

[The b-curl of Eq. (37) shows that ,u = ,u(t, r) only.] 
Substitution into Eqs. (35) and (36) shows that 

V x I - i1 t = 0, V· 1 = 0, (45) 

and ,u is a constant (complex). 
The complete group is thus characterized by 17 

parameters and six functions (the I). We summarize 
the group as follows: Eqs. (45), with Table II. 

TABLE II. Isogroup of the vacuum Maxwell equations. Meaning 
of generators corresponding to parameters in Eqs. (43) and (44). 

No. Parameters Description 

1 g time translation 
2-4 c space translation 
5-7 b Lorentz transformation 
8-10 d space rotation 
11 f space-time scale change 
12-15 e, a conformal transformations 
16 Re.u field scale change 
17 1m .u duality rotation 
18 I addition of arbitrary sollltion 

The coordinate transformations may be written in 
four-dimensional language as 

V" = A" + Kx" + n"2wavxV + 2(IXTXT)X" 

- IX"(nTVxTxV), (46) 

where wav = -Wv• and the 1'JTV is the Minkowski 
metric. 

The matrix V~,,u = 1,···,10, A = 1,···.17, is 
in general of rank 10: The transformation group is 
multiply transitive over the lO-space. The only 
degeneracy occurs on the eight-dimensional submani
fold described by 

E· E - B· B = 0 and E· B = O. (47) 

That this is an invariant variety may be directly 
verified by taking Lie derivatives with respect to the 
isovectors. It is interesting that when the Minkowski 
interpretation is made (i.e., that E and B are com
ponents of a bivector F"v in a metric 4-space spanned 
by xo, xl, x 2, x3), these conditions appear as algebraic 
specializations at a point, apparently not dependent 
on the field equations. 

C. The Korteweg-cie Vries Equation12 

The equation is 

€ is a constant (usually small). 

(48) 

We write z = ux , w = Uxx , and y = Uxt. Then the 
forms we need are 

IX = dz - w dx - y dt, 

dlX = -dwdx - dydt, 

fJ = (du - zdx)dt, 

y = du dx + uz dt dx - € dw dt. 

(49) 

The variables are t, x, u, Z, w, and y. The invariance 
group is given in Table III. 

It is of considerable interest to compare this group 
with the isogroup of the same equation with € = 0: 
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TABLE III. Invariance group of the Korteweg-de Vries equation. 

No. vt V· VU V' vw V, Type 

1 1 0 0 0 0 0 time translation 
2 0 1 0 0 0 0 space translation 
3 3t x -2u -3z -4w -6y x, t scale change 
4 0 t 1 0 0 -w Galilean 

transformation 

Ut + UU'" = O. This latter isogroup is given by 

yu = I(u, x - ut), 

V'" - uvt = tf(u, x - ut) + g(u, x - ut). (50) 

vt is a completely arbitrary function of t, x, and u; 
I and g are arbitrary functions of their arguments. The 
inclusion of the € term drastically reduces the isogroup 
of the equation. . 

Choose an arbitrary isovector V. We may without 
loss of generality adjust the ratio of generators 1, 2, 
3, and 4 in V to be -3to: -(xo + 2toU): 1 :2U, where 
to, xo, and U are constants. With this choice, we 
have VI = 3(t - to), V'" = x - Xo + 2U(t - to), and 
VU = -2(u - U). To obtain a similarity solution, 
we annul the form V -.J P and obtain one new 
equation: 

(51) 

Standard integration yields 

u - U = T-iF('YJ), where 'YJ = T-i(X - UT), 

and 
x = x - xo, T = t - to· 

Substitution into the Korteweg-de Vries equation 
itself now shows that F satisfies 

€FIfI + F'(F - !'YJ) - iF = O. (52) 

Any F satisfying this equation yields a general simi
larity solution containing the three parameters U, xo, 

and to' A trivial solution is F = 'Y}, which leads to 
u = XIT. 

We did not explicitly include dP and dy in writing 
the closed set of forms to be annulled, since these 
3-forms are quickly seen to be in the ideal. This, 
however, raises the question whether closed 2-forms, 
say d~ and d~, algebraically equivalent to p and y, 
cannot be found, in terms of which the set of forms 
would even more obviously be closed. This question is 
also of interest because of the contact it makes with 
the discovery of so-called conservation laws of the 
original partial differential equation. From Stokes 
theorem we have ~ ~ = S d~, where the first integral is 
over a closed curve bounding the 2-manifold of the 
second integral (remember, we are in a six-dimensional 

space). Under the second integral we may place the 
f"'o/ 

section d~ of the 2-form with the manifold, and if the 
2-manifold is such as to annul the 2-form-Le., a 
solution of the partial differential equation-this last 
vanishes. We are left with the relation ~ t = 0 in the 
solution manifold. By setting t = X dt - T dx
where X is zero at the ends of some interval in line 
integration around a rectangular path in x, t space-it 
follows that the quantity I == S T dx will be time 
independent. We have not searched for all such pos
sible forms ~; we have, however, found those special
ized to be of the form ~ = t = Xdt - Tdx, by 
writing 

d~ = flY + A doc + ap + Aoc, 

where fl, A, and aareunknownO-formsandAa I-form, 
and integrating the resulting linear partial differential 
equations. There are five distinct solutions, which 
may be linearly superimposed: 

A. X = €w + tu2
, 

T = u, 

d~ = -I' + up; 

B. X = -€uw + !€Z2 - i-u 3
, 

T = -tu2
, 

d~ = uy - (€w + u2)P + €Zoc dt; 

C. X = yu - t€W
2 

- twu2 
- (1/8€)u\ 

T = -wu - tz2 
- (1/6€)u 3

, 

d~ = [w + (1/2€)u 2]y + [y - wu - (1/2€)u3]P 

+ zoc dx - u doc; 

D. X = €Wx - €wut + t€Z2t - €z 

E. 

+ txu2 
- itu3

, 

T = xu - !tu2
, 

d~ = (tu - x)y + (-€wt + xu - tu2)P 
+ €(zt - 1)oc dt; 

01> 01> 
X=-+y-, 

ot oz 

01> 01> 
T= ---w-, 

ox oz 

1> is an arbitrary function of t, x, and z. The 
first three of these correspond directly to the first three 
conservation laws in the second of Refs. 12; the fourth 
is apparently of less interest because the independent 
variables x and t occur in X. We see this process as a 
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generalization of a search for traditional first inte
grals-O-forms whose exterior derivatives are in the 
differential ideal-to higher order. 

D. One-Dimensional Compressible Fluid Dynamics 

We consider isentropic flow, so that the pressure P 
is a function of density only: P = P(p). With the usual 
definition of sound speed, c = (dPjdp)!, the equations 
are 

Pt + pUa: + uPa: = 0, 

pUt + puua: + c2px = 0. 

We write these equations as the 2-forms 

CI. = dpdx - pdudt - udpdt, 

f3 = p du dx - pu du dt - e2 dp dt. (53) 

The variables are t, x, p, and u. The isogroupisgivenin 
Table IV. F and G are functions of p and u and obey 
(subscripts denote derivatives) 

Gu = Fp and p2Gp = c2Fu' (54) 
yielding 

c2Guu - p2Gpp = 0. 

One notes the interchange of dependent and inde
pendent variables-with consequent linearization. In 
fact, we have exactly performed a hodograph trans
formation. The hodograph equations result from 
imposing independence of p and u in Eqs. (53): 

Xu + pIp - ulu = 0, 

pXp - pulp + c2tu = 0. 

Substitution of X = uFjp - G, 1= Flp, where F 
and G are functions of u and p, yields again Eqs. (54). 

E. The Lambropouios Equation 

The equation is 

PXlI + axPx + byPlI + exyP + Pt = 0; (55) 

a, b, and c are constants. This equation has been 
recently discussed by at least five authors. I3 We define 
U = PIIJ and Q = Py , and consider six variables t, x, 
y, P, U, and Q. We write the differential forms to be 

TABLE IV. Isogroup for one-dimensional compressible fluid 
flow. 

No. VI V· VP V" Type 

1 t x 0 0 t, x scale change 
2 0 t 0 1 Galilean 

transformation 

3 
F uF _ G 

0 0 
Hodograph 

p p transformation 

annulled as 

() = (dP - U dx - Q dy) dt, 

dO = -(dU dx + dQ dy) dl, (56) 
and 

tP = [dUdt - dPdy 

+ (axU + byQ + exyP) dy dt] dx. 

The isogroup turns out to have the following structure: 

V IIJ =/+ xg, 

VU = 1+ ym, 
yP = r + Ps, 

yu = U(s - g) + rllJ + Ps"" (57) 

yQ = Q(s - m) + ry + PSy, 

yt = f(g + m)dt + 15, 

where f, g, I, and m are functions of t, 15 is a constant, 
and rand s are functions of t, x, and y. These functions 
obey the equations (a prime denotes differentiation 
with respect to t) 

(g + m)" - [(a + b)2 - 4c](g + m) = 0, 

(g - my = (a - b)(g + m), 

J" + (b - a)f' + (c - ab)f = 0, 

r + (a - b)l' + (c - ab)l = 0, 

r",,, + axr", + byry + exyr + rt = 0, 

sx = l' + ym' - bl- by(g + m), 

Sy = I' + xg' - af - ax(g+ m), 

St = 2(ab - c)xy(g + m) + (ab - c)(xl + yf) 

-ax(l' + ym') - by(f' + xg') 

+ a(g + m) - g'. 

(58) 

The addition of an arbitrary solution is given by r. 
To detail the other transformations, we write 

Al,2 = -i(a + b) ± (tea + b)2 - c)!, 

and note that 

Al + A2 = - (a + b) and AIA2 = c. 

We then have two cases. Note that in each case we have 
nine parameters: IX, (J, 1', 15, p, ", $, fj, and k, 

Case 1.' Al =F A2.' 

g = I' + CI.(a + A1)e(Al-).2)t + (J(b + A1)e-().1-).2lt, 

m = -I' + CI.(b + A1)e().1-).2)t + (J(a + A1)e-().1-)..lt, 

/ = pe(aH1lt + ve-(bH1lt, 

I = $e(b+).llt + 'Y)e-(aH1lt, (59) 

s = (.1.1 - A2)(IX/.1e().1-)..lt + (JA2e-(AI-Aalt)xy 

+ (eA1e(b+).,lt + fjA2e-(a+l1)t)x 

+ (pA1e(a+).llt + vA2e-(b+).,lt)y 

- IXA1e(AI-Aa)t + (JA2e-().1-).2l t + k, 
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so that 

Case 2: Al = A2 == A: 

g = 2rxt + fJ + (a - b)(rxt2 + fJt) + 1', 

m = 2rxt + fJ - (a - b)(rxt2 + fJt) - 1', 

f = (ft + vt)e(a+.l.lt, 

e = (~ + r;t)e-(a+.l.)t, (60) 

s = 2(2Arxt + AfJ + rx)xy + x(rj + A~ + Arjt)e-(aHlt 

+ y(v + Aft + Avt)e(a+.l.)t 

- 2(Arxt + AfJ + IX)t + k, 

so that 

vt = 2IXt2 + 2fJt + 6. 

We summarize the significance of the parameters in 
Table V. There are no invariant varieties. 

For similarity solutions, set r = ° and adjoin the 
forms contracted with a general isovector. Only one 
equation now results: 

vP = VtP t + VVPI/ + V"'P"" (61) 

which is quasilinear. The standard integration pro
cedure gives 

dx =f+ xg 

dt V t 

dy = 1 + ym 

dt V t 
(62) 

dP = p!...-. 
dt V t 

Similarity variables are 

w = -L + x/M, 
and 

z = -H + y/Q, (63) 

TABLE V. Invariance group parameters for the Lambropoulos 
equation. 

No. Parameter Type 

1 ex time-dependent scale change in x, y 
2 [3 time-dependent scale change in x, y 
3 Y constant scale change in x, y 
4 <5 time translation 
5 ~ time-dependent translation in y 
6 'T) time-dependent translation in y 
7 It time-dependent translation in x 
8 v time-dependent translation in x 
9 k scale change in P 

10 addition of arbitrary solution 

where 

Also, 

M = exp (fcvt)-lg dt), 

Q = exp (fcvtrIm dt), 

(QM = vt), 
L = f(MVt)-y dt, 

H = J(QVt)-11 dt. 

(64) 

P = F(w, z) exp (Awz + Bz + Dw + E), (65) 
where 

where 

A = m - bVt, 

B = LCg - aVt) + M-1f, 

D = H(m - bVt) + Q-1l, 

E = J dt[LH(m - bVI) 

+ L(VtH" + VI'H' + mH') 

+ H(Vt[;' + Vt'I: + gI:) 

+ a + (Vtrl(K - g»), 
K = k + I' - ad, Case 1, 

= k + I' + fJ - a6, Case 2. 
The equation for F is 

Fwz - CwFw + r F = 0, 
where 

C = 21' - (a - b)d, 

r = Gwz + nw + pz + q, 
and 

G = 1'2 + y6(b - a) + (j2(C - ab). 

(66) 

(67) 

The slight asymmetry in this equation is caused by the 
slight asymmetry in A above. p and n are integration 
constants resulting from the Land H quadratures. q 
is a combination of constants p, n, K, the isogroup 
parameters, and a, b, and c. 

A readily soluble subcase (given here for Case 1) is 
obtained by setting 

I' = 6 = n = p = q = 0. 
Then F = Fl(W) + F2{z). One has a six-parameter 
(oc, (J, ~, rj, ft, v), two-arbitrary-function (Fl and F2) 

solution of the original equation. In this case, one has 

VI(Q-ll)' 
H= , 

ocfJ(Al - A2)2 
Vt(M-1f)' 

L= , 
IXfJ(A} - A2)2 

k = -IX{3(A1 - A2)2LH + (Vt)-lfl, 

and k is guaranteed to be constant. 
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TABLE VI. Isogroup of the Einstein-Maxwell cylindrical wave equations. 

No. V C A B 

1 0 0 0 0 0 
2 t r 0 0 -A -B 
3 0 0 0 1 0 0 
4 0 0 1 C 0 0 
5 0 0 C HC' - e2U

) F G 

The two special solutions reported by Neuringer13 

are special similarity solutions for which f = I = 0, 
(J = 0, Ol = -b =/= 0, and K = either 0 or -2£5(Al -
1.2), 

F. Einstein-Maxwell Cylindrical Wave Equations 

Cylindrical wave equations for combined gravita
tional and electromagnetic fields have been presented 
before by one of the authors14 in connection with 
solution generation methods in general relativity: 

Urr + (l/r)Ur - Uti = e-2U(C~ - C;), 

Crr + (l/r)Cr - Cit = 2(CPr - CtUt). (68) 

e2U is a metric coefficient (gravitational potential); C 
is an electromagnetic potential. 

If we write A = Ut , B = Ur , F = Ct , G = Cr ' and 
include U and C in our set of variables, we obtain the 
following differential forms: 

Ol = dU - A dt - B dr, 

{J = dC - F dt - G dr, 

dOl = -dA dt - dB dr, 

dfJ = -dF dt - dG dr, 
(69) 

y = dB dt + dA dr - [e- 2U (P - G2) - B/r] dr dt, 

b = dG dt + dF dr - [2(BG - AF) - G/r] dr dt. 

The isogroup has five generators, as shown in Table 
VI. 

We see from this table that the isogroup breaks 
naturally into two subgroups, which respectively 
transform only the original independent (t, r) or 
dependent variables (U, C). The first subgroup is 
quite trivial; the second is a multiply transitive group 
on (U, C) space which turns out to be integrable. 
Integration of dUjdT = V U and dCjdT = V C yields 
finite transformations which can be put in the form 

C' = + s(C - 1]) 
; (C-1])2+V 2 ' 

v' = 'V, (70) 
(C _1])2 + V 2 

where V = eU
, V' = eU

' and~, 1], and 'areconstants. 

F G Type 

0 0 time translation 
-F -G r, t scale change 
0 0 potential translation 
F G V, C scale change 

CF- Ae2U CG - Be2U 

These equations generate new, physically distinct, 
solutions from old; they are implicit in the previous 
work, where they were found by a different approach. 14 

A discrete transformation, C' = - C and V' = V, was 
also presented there, and is indeed obvious from Eqs. 
(68). We do not find it with our present approach 
because it cannot be obtained by a continuous 
transformation from zero. 

We list here, for completeness, I-forms ~ whose 
exterior derivative d, is in the ideal (analogous to the 
treatment for the Korteweg-de Vries equation). We 
write ,= R dt - T dr and give four solutions. The 
en are not listed since they are rather long. 

A. R = 2r(FGe-2U + AB), 

T = -re-2U(F2 + G2
) - r(A2 + B2); 

B. R = rGe-2U, 

T = -rFe-2U ; 

C. R = r(e-2U CG + B), 
(71) 

T = -r(e-2UCF + A); 

D. R = r[(C2e-2U 
- 1)G + 2Be]. 

T = _r[(C2e-2U - l)F + 2AC]. 

For each of these there is an integral conservation 
law for Eqs. (68). 
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The existence of gravitational fields of Petrov-Penrose type [4] in the presence of a perfect fluid is 
established. In particular, the general type [4] solution of the Einstein field equations with a perfect fluid 
as source is obtained subject to the restriction that the repeated principal null congruence of the Weyl 
tensor is geodesic. The line element is expressed in terms of four arbitrary functions of a single variable, 
and in general admits no Killing vectors. The fluid flow is irrotational, but has nonzero shear, expansion, 
and acceleration. The physically reasonable requirement 0 < p ~ A, where p is the fluid pressure and A 
the rest energy density, is imposed, and restricts the domain of validity of the solutions to a certain extent. 
In addition, it is shown that the stronger condition 0 < p ~ AJ3 excludes certain of the above solutions 
and further restricts the domain of validity of the remaining ones. 

1. INTRODUCTION 

At any point P in space-time, the Weyl conform 
tensor (assumed nonzero) defines a set of four direc
tions (possibly coincident) along the null cone at P 
which satisfy! 

k[aCb]cd[eknkckd = 0, 

called the gravitational principal null directions 
(p.n.d.'s). A gravitational field is said to be null or of 
Petrov-Penrose type [4] in some region if all the 
p.n.d.'s coincide in that region. The resulting p.n.d. 
then satisfies l 

(Ll) 

Gravitational fields of this type have been inter
preted as a simple form of gravitational radiation 
propagating along the congruence of null curves to 
which the repeated p.n.d. is tangent.2- 4 For a source
free field (i.e., zero Ricci tensor) the Goldberg-Sachs 
theorem5 asserts that this congruence, called the 
principal null congruence (p.n.c.) of the type [4] 
gravitational field, is geodesic and shear-free. 

In this paper we consider type [4] gravitational 
fields with a perfect fluid as source. Such fields have 
been considered by Kundt and Triimper2 and by 
Szekeres,3 who derived some general relationships 
between the p.n.c. and the fluid congruence, but 
obtained no explicit solutions. 

The Einstein field equations with a perfect fluid as 
source read6 

Rab - tgUb R = -[(A + P)UaUb - pgab], 

UaUa = +1, (1.2) 

where Ua is the fluid velocity, A the energy density, 
and p the pressure of the fluid, which we take to 
satisfy the inequalities 

° < p ~ A. (1.3) 

The signature of the metric tensor gab is (- - +). 
We will show that, for type [4] solutions of (1.2), 

the p.n.c. cannot be geodesic and shear-free, as in the 
vacuum case. We therefore consider type [4] solutions 
for which this congruence is geodesic, but has nonzero 



                                                                                                                                    

666 B. K. HARRISON AND F. B. ESTABROOK 

3 E. Cartan, Les systemes differentials exterieurs et leurs applica. 
tions geometriques (Hermann, Paris, 1945). 

• W. Slebodzinski, Formes eXfl!rieures et leurs applications 
(Panstwowe Wydawnictwo Naukowe, Warsaw, 1954, 1963), Vols. 
[ and n. 

5 Y. Choquet·Bruhat, Gt!ometrie differentielle et systemes 
exterieurs (Dunod, Paris, 1968). 

6 R. Hermann, Differential Geometry and the Calculus of Varia· 
tions (Academic, New York, 1968); Advan. Math. I, 265 (1965). 

7 J. A. Schouten, Ricci·Calculus (Springer·Verlag, Berlin, 1954), 
2nd ed.; J. A. Schouten and W. v.d.Kulk, Pfaff's Problem and 
Its Generalizations (Clarendon, Oxford, 1949). 

8 N. J. Hicks, Notes on Differential Geometry (Van Nostrand, 
Princeton, N.J., 1965). 

JOURNAL OF MATHEMATICAL PHYSICS 

9 L. P. Eisenhart, Continuous Groups of Transformations (Dover, 
New York, 1961), pp. 67 If. 

10 Compare J. Frenkel, Wave Mechanics: Advanced General Theory 
(Oxford U.P., Oxford, 1934), pp. 264-67. 

11 Cf., e.g., C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525 
(1957). 

12 Cf., e.g., R. M. Miura, C. S. Gardner, M. D. Kruskal, and 
C. H. Su, J. Math. Phys. 9, 1202, 1204 (1968); 10, 536 (1969); 
11, 952 (1970). 

13 P. Lambropoulos, J. Math. Phys. 8, 2167 (1967); J. Neuringer, 
ibid. 10, 250 (1969); M. E. Goldstein, ibid. 11, 667 (1970); M. 
Kolsrud, ibid., 829 (1970); R. Wilcox, ibid., 1235 (1970). 

14 B. K. Harrison, Phys. Rev. 138, B488 (1965); 1. Math. Phys. 9, 
1744 (1968). 

VOLUME 12, NUMBER 4 APRIL 1971 

A Class of Type [4] Perfect Fluid Space-Times* 

M. OLESON 

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada 

(Received 21 September 1970) 

The existence of gravitational fields of Petrov-Penrose type [4] in the presence of a perfect fluid is 
established. In particular, the general type [4] solution of the Einstein field equations with a perfect fluid 
as source is obtained subject to the restriction that the repeated principal null congruence of the Weyl 
tensor is geodesic. The line element is expressed in terms of four arbitrary functions of a single variable, 
and in general admits no Killing vectors. The fluid flow is irrotational, but has nonzero shear, expansion, 
and acceleration. The physically reasonable requirement 0 < p ~ A, where p is the fluid pressure and A 
the rest energy density, is imposed, and restricts the domain of validity of the solutions to a certain extent. 
In addition, it is shown that the stronger condition 0 < p ~ AJ3 excludes certain of the above solutions 
and further restricts the domain of validity of the remaining ones. 

1. INTRODUCTION 

At any point P in space-time, the Weyl conform 
tensor (assumed nonzero) defines a set of four direc
tions (possibly coincident) along the null cone at P 
which satisfy! 

k[aCb]cd[eknkckd = 0, 

called the gravitational principal null directions 
(p.n.d.'s). A gravitational field is said to be null or of 
Petrov-Penrose type [4] in some region if all the 
p.n.d.'s coincide in that region. The resulting p.n.d. 
then satisfies l 

(Ll) 

Gravitational fields of this type have been inter
preted as a simple form of gravitational radiation 
propagating along the congruence of null curves to 
which the repeated p.n.d. is tangent.2- 4 For a source
free field (i.e., zero Ricci tensor) the Goldberg-Sachs 
theorem5 asserts that this congruence, called the 
principal null congruence (p.n.c.) of the type [4] 
gravitational field, is geodesic and shear-free. 

In this paper we consider type [4] gravitational 
fields with a perfect fluid as source. Such fields have 
been considered by Kundt and Triimper2 and by 
Szekeres,3 who derived some general relationships 
between the p.n.c. and the fluid congruence, but 
obtained no explicit solutions. 

The Einstein field equations with a perfect fluid as 
source read6 

Rab - tgUb R = -[(A + P)UaUb - pgab], 

UaUa = +1, (1.2) 

where Ua is the fluid velocity, A the energy density, 
and p the pressure of the fluid, which we take to 
satisfy the inequalities 

° < p ~ A. (1.3) 

The signature of the metric tensor gab is (- - +). 
We will show that, for type [4] solutions of (1.2), 

the p.n.c. cannot be geodesic and shear-free, as in the 
vacuum case. We therefore consider type [4] solutions 
for which this congruence is geodesic, but has nonzero 
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shear. Section 2 contains a discussion of the well
known properties of congruences of null geodesics. 
In Sec. 3 the discussion is specialized to the case 
under consideration, and the dependence of the 
expansion and shear of the p.n.c. on an affine param
eter is derived. The general line element is given in 
Sec. 4, and some of its properties discussed in Sec. 5. 

2. PROPERTIES OF NULL GEODESIC 
CONGRUENCES 

In discussing the properties of a congruence of null 
geodesics, it is convenient to use a null tetrad7 (ka , na , 

ma, rna), where ka and na are real null vector fields, ma 

is a complex null vector field, and ma is the complex 
conjugate of mao The orthogonality properties of these 
vectors at any point are 

kama = kama = nama = nama = 0, 

kana = 1, mama = -1. (2.1) 

It follows that the metric tensor gab can be expressed 
in terms of the null tetrad as 

gab = kanb + kbna - mamb - mbma' (2.2) 

The real vector field k a is chosen to be tangent to the 
given congruence of null geodesics. The remaining 
freedom in the choice of null tetrad is described by? 

fa = Rka, rna = is(ma _ RTka), 

fla = R-1na - Tma - Tma + RTTka, (2.3) 

where Rand S are arbitrary real functions and T is 
complex. 

The geometric properties of the null congruence 
are then described by the complex scalars 

p = ka;bmamb, a = ka;bmamo, (2.4) 

which, under (2.3), transform according to 

(2.5) 

The real part of p is called the expansion, the imaginary 
part the twist, while the absolute value of a is called 
the shear. By means of a tetrad transformation (2.3) 
with S = T = O,we can ensure that the tangent field k a 

corresponds to an affine parameter on the congruence. 
We then have the following expressions for the 
geometric scalars7: 

p + p = -ka;a, 

(p - p)2 = -2k[a;o]ku;b, (2.6) 

aa = Hk(a;o)ka;o - t(ka;a)2]. 

These quantities have a simple geometric interpreta
tion. Intuitively speaking, if a ¥= 0, a small circle will 

be deformed into an ellipse as one follows the null 
geodesics. On the other hand, if a = 0 and p + P ¥= 0, 
the radius of a small circle will change along the 
congruence. Finally the vanishing of p - P is a 
necessary and sufficient condition for the null geo
desics to generate null hypersurfaces.8 

Equations governing the behavior of p and a along 
the null geodesics may be derived by contracting the 
Ricci identities 

ka;bC - ka;Cb = kdRdabc, 

with makbiiic and makomc, and substituting from (2.6). 
One obtains, after specializing the tetrad so that9 

ma;bmako = 0, 

the following equations10 : 

Dp = p2 + a(j + <1>00' 

Da = (p + p)a + 'Yo, 

(2.7) 

(2.8) 

(2.9) 

where D = ka(}/(}xa denotes differentiation along the 
congruence, and 

<Poo = -iRaokakb, 

'Yo = -Cabcdkamokcmd. 

(2.10) 

(2.11) 

3. PROPERTIES OF THE NULL GEODESICS 

We apply the results of the preceding section to the 
p.n.c. (assumed to be geodesic) of the type [4] perfect 
fluid space-time. First, Eq. (1.1) impliesll 

'Yo = O. (3.1) 

Furthermore, it is a consequence of the field equation 
(1.2) and the Bianchi identities (as verified in the 
Appendix using the Newman-Penrose12 formalism) 
that the p.n.c. satisfies the restrictions 

p = p, 

<Poo = 3a(j, 

(3.2) 

(3.3) 

which are invariant under the tetrad transformation 
(2.3). Equations (2.8) and (2.9) thus reduce to 

Dp = p2 + 4a(j, (3.4) 

Da = 2pa. (3.5) 

In addition, by virtue of the field equations (1.2), 
Eq. (3.3) can be written 

(3.6) 

which implies a ¥= 0 in the presence of a fluid. 
Furthermore, Eq. (3.4) implies p ¥= O. 

On taking Eq. (3.2) into account, we can state the 
following theorem. 
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Theorem 3.1: If the principal null congruence of a 
type [4] gravitational field with perfect fluid as 
source is geodesic, then this congruence generates null 
hypersurfaces, but has nonzero shear and expansion. 

The coordinate system is now specialized so that 
Xl, X2, X4 are constant along the null geodesics of the 
p.n.c. and x3 = r is an affine parameter along this 
congruence. Then the tangent field k a is given by 

(3.7) 

and Eqs. (3.4) and (3.5) may be integrated to yield the 
r dependence of p and (]. There are two distinct cases 
to be considered. 

Case I: p2 - 40'<1 = 0: 

p = -1/(2r), 0' = -1/(4r). (3.8) 

Case II: p2 - 40'<1 ¥= 0: 

p = -r/(r2 - k 2), 0' = k/[2(r2 - k 2)], (3.9) 

with k = k(XI, x2 , .x4). 

We have used a coordinate transformation of the 
form r' = r + j(XI, X2, X4) to eliminate the "con
stant" of integration and a tetrad transformation 
(2.3) with R = 1, T = 0, and as/or = 0 [so that 
(2.7) is preserved], to set 0' = <1 [see Eq. (,2.5)]. 

4. THE LINE ELEMENTS 

We complete the construction of the coordinate 
system as follows. Let the null hypersurfaces generated 
by the p.n.c. (see Theorem 3.1) be given by v = con
stant, and let ~ and 'Yj be parameters labeling distinct 
geodesics in these hypersurfaces. Then the quantities 
(Xl, X2, x3 , x4) == (~, 'Yj, r, v), where r is the affine 
parameter along the p.n.c. (introduced in the preced
ing section), form a coordinate system which is 
closely related to that of Robinson and Trautman.13 

It is convenient to use the tetrad freedom (2.3) with 
R = 1, S = 0, to set maua = 0 so that Ua is of the form 

where 
(4.1) 

(4.2) 

The simple r-dependence of p and (] [see Eqs. (3.8) and 
(3.9)] now enables one to integrate the field equations 
in Newman-Penrose form, in a manner similar to that 
used by Newman and Tambourino,14 to obtain the 
r dependence of the metric tensor, the fluid velocity, 
energy density, and pressure, together with certain 
equations relating the various "constants" of integra
tion that arise. One finds, in agreement with a result 

of Kundt and Triimper,2 that the fluid congruence is 
hypersurface orthogonal. Furthermore, the coordi
nates can be specialized so that the corresponding 
family of hypersurfaces is given by r = const. It 
follows, by virtue of (3.7) and (4.2), that 

(4.3) 

In the above procedure, the function k(~, 'Yj, v) of Eq. 
(3.9) is transformed to be a positive constant15 k. 
Class II necessarily divides into two subclasses IIa 
and lIb depending on whether p2 - 40'<1 < 0 or 
p2 - 4(]<1 > O. The affine parameter r can assume the 
values 

0< r < 00, 

0:::;; r < k, 

O<k<r<oo 

(4.4) 

(4.5) 

(4.6) 

in classes I, IIa, and lIb, respectively. The line elements, 
representing the general solution to the problem under 
consideration, are given below. 

Class I: p2 - 4(]<1 = 0: 

where 

B-2 = 4[a2(v)r! + b2ri], b = const, 

H = LI('Yj, v) cos a(v)~ + L2('Yj, v) sin a(v)~, 

with a(v) > 0 as a nonconstant function. The func
tions Li'Yj, v), (l(, = 1,2, which are not permitted to 
vanish simultaneously, are each expressed in terms of 
two arbitrary functions Ea(v) and Fa(v) byl6 

Lit], v) = EaJv) cos [b'Yj + Folv)], b ¥= 0, 

b = O. 

The fluid pressure and energy density assume the form 

p = (i)r-i [a2(v) - 7b2r], 

A - P = 12b2,-!. (4.7) 

In deriving this solution we have imposed the con
dition p :::;; A [see (1.3)]. If b = 0, the requirement 
p > 0 is also satisfied for all permissible values (4.4) 
of r with a(v) essentially17 arbitrary. However, if 
b ¥= 0, it is necessary to restrict the function a(v) and 
the domain (4.4) of r according to 7b2f3:::;; a2(v), 
r < p, where f3 is an arbitrarily assigned positive 
constant. 
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Class Ila: p2 - 40'0' < 0: 

ds2 = _(k2 
- r 2)R-l (d; - Rk-l ~~ dVr 

( 
aH )2 - (k2 - ,.2)R dt) + R-lk-l at} dv 

+ 2H dr dv - B-2H 2 dv2, 
where 

B-2 = 2(k2 - r2)t[k-la2(v) - b2(r + k)], 

b = const, 

H = Ll(t}, v) cos a(v)$ + L2(t}, v) sin a(v)$, 

R(r) = (k - r)t(k + r)-t, 
with a(v) > 0 as a nonconstant function. The func
tions La(t}, v), rx = 1,2, which are not permitted to 
vanish simultaneously, are each expressed in terms of 
two arbitrary functions Ea(v) and Fa(v) according to16 

(

EiV) cos ([a2(v) - 2b2k2]tf} + Fiv)} , 

a2(v) > 2b2k2
, 

Lin, v) = Ea(v) cosh ([2b2k2 
- a2(v)]tn + Fiv)}, 

a2(v) < 2b2k2
• 

The pressure and energy density are given as 

p = (t)(k2 - r2)-i[b2(4r3 - 5k2r - k3) + ka2(v)], 

A - P = 12b2r(k2 - r2)-t. (4.8) 

In the case a2(v) > 2b2k 2 , the requirement p > 0 
holds for all permissible values (4.5) of r provided that 
a(v) satisfies the additional restriction a2(v) > 
[l + (!)~]k2b2. If b = 0, a(v) is essentially17 arbitrary. 
In the case a2(v) < 2b2k 2 (=> b ::;t= 0) it is necessary to 
restrict the function a( v) and the domain of r according 
to a2(v) ~ rxkW, r < fJk, where, for fixed 1 < rx < 
2, fJ < 1 is the unique positive number satisfying18 
4fJ3 - 5fJ + rx - 1 = o. 

Class Ilb: p2 - 40'0' > 0: 

ds2 = _(r2 - k2)R-l ( d$ + k-lR ~; dv r 

where 

- (r2 - k2)R( dt) - k-lR-l ~: dVr 

+ 2H dr dv - B-2H 2 dv2, 

B-2 = 2(r2 - k2)t[b2(r + k) - Ek-la2(v)], 

b = const, 

R(r) = (r - k)t(r + k)-t, 

with a(v) > 0 as a nonconstant function. The non
vanishing function H($, t}, v) is determined in terms 
of arbitrary functions Ea(v) , Fa(v), rx = 1,2, its 

explicit form depending on E = ± 1 according to16 

.the following. 

(i) E = + 1: 

H = Ll(t}, v) cos a(v)$ + L2('f}, v) sin a(v)$, 

Lit}, v) = Ea(v) cos {[2b 2k2 
- a2(v)]r'f} + Fiv)}, 

a2(v) < 2b2k2
• 

(ii) E = -1: 

H = Ll(t}, v) cosh a(v)~ + Ll'f}, v) sinh a(v)~, 

Lin, v) = Ea(v) cos ([a 2(v) + 2b2k2]tt} + FaCv)}. 

For corresponding E, the pressure and energy density 
are 

p = G-)(r2 - k2)-~[b2( -4r3 + 5k2r + P) - Eka2(v)], 

A - P = l2b2r(r 2 - k 2)-t. (4.9) 

In the case E = -1, the requirement p > 0 holds 
with b ::;t= 0, provided we restrict the function a(v) 
and the domain (4.6) of r according to rxk2b2 :::;; a2(v) 
and r < fJk, where, for a fixed arbitrary positive 
number rx, we have a unique fJ > 1 satisfying19 
4fJ3 - 5fJ - 1 - rx = O. There are, however, no 
restrictions on a(v) or the domain of r if b = 0,17 

In the case E = + 1 (=> b ::;t= 0), the function a(v 
and the domain (4.6) of r are restricted by the in
equalities [a(v)jb]2:::;; rxk2, r < kfJ, where rx < 2 
determines fJ > 1 as the unique real number satisfying 
4fJ3 - 5fJ + rx - 1 = O. 

In connection with these restrictions, we should 
note that some authors20 impose, instead of (1.3), the 
stronger condition 0 < p :::;; tA on the fluid pressure. 
Solutions with b = 0 are then immediately excluded 
from our line elements, but all others with suitable 
functions a(v) survive. For example, Class I will then 
require that the function a(v) and the domain (4.4) 
of r be restricted by the inequalities 0 < 7b2fJ :::;; 
a2(v) :::;; 15b2rx, 0 < rx:::;; r < fJ, where rx and fJ are 
positive constants which satisfy I < fJjrx < ¥ but 
are otherwise arbitrary. 

The Killing equations were solved for the above line 
elements. It was found that, provided a'(v)::;t= 0, 
(which we have assumed) the only metrics which 
admit a nontrivial group of isometries are contained 
~in the subcase of Class I for which b = O. For 
example, if 

H = cos a(v)$ => b = 0, 

this metric admits a one-parameter group of isometries, 
unless a(v) satisfies 

(a/a')' = -t, 
in which case there are two independent Killing vector 
fields, this being the maximum number possible. As a 
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second example, if 

H = r; cos a(v)~ =? b = 0, 

there are no Killing vector fields unless a(v) satisfies 

(a/a')' = -1, 

in which case there is one. Finally, we note that if 
a'(v) = 0, the line elements of all three classes are 
conformally flat (see Sec. 5) and admit a six-parameter 
group of isometries. 

5. PROPERTIES OF THE WEYL TENSOR AND 
FLUID CONGRUENCE 

For type [4] gravitational fields, the Weyl conform 
tensor defined by 

Cabca = Rabcd + ga[CRd]b + Ra[cgd]b - (R/3)ga[cga]b , 

with Rab = Reabe , can be written in terms of the null 
tetrad of Sec. 2 as 

Cabca = -4(CVabVcd + CVabVca), (5.1) 
where 

Vab = k[amb] ' 

and C is a scalar, in general complex.21 

For the class of solutions considered here, it is a 
consequence of the field equations and the Bianchi 
identities that the function C is proportional to the 
shear of the p.n.c. and to the shear scalar (o'abo'ab)t of 
the fluid congruence, the latter being defined by22 

o'ab = u(a;b) - U(aub) - «()/3)(gab - UaUb), (5.2) 

where 
(5.3) 

are the expansion and acceleration of the fluid, 
respectively. The explicit formula, derived in the 
Appendix, is 

(5.4) 

so that C is real. When the expressions of Sec. 4 are 
substituted into (5.4), one obtains23 

where 
C = a(v)a'(v)F(r)/H, 

Class I, 

Class IIa, 

Class lIb. 

(5.5) 

(5.6) 

Thus the Weyl tensor is nonzero if and only if the 
function a(v) in the line elements is nonconstant (as 
assumed). In addition, the vectors ka and ma, deter
mining the null bivector Vab , are given by (3.7) and 

m a = 2-1 IF(r)1 [f(r)b~ + if(rr1b~], 

where F(r) is defined by (5.6) andf(r) by 

(

r-! Class I, 

f(r) = (k ~ r)1(k + r)-1, Class JIa, 

(r - k)1(r + k)-!, Class JIb. 

It is shown in the Appendix that Vab is covariantly 
constant along the p.n.c. so that 

oC - -
Cabca;eke = -4 a; (VabVcd + VabVea)· 

The behavior of Cabcd along the p.n.c. is thus determined 
solely by the function F(r) of Eq. (5.6) which gives the 
r dependence of C. Note24 that, for the Robinson
Trautman type [4] vacuum solutions [whose repeated 
p.n.c. is hypersurface generating (and hence geodesic), 
shear-free, but expanding], the function C of (5.1) 
varies as ,-1. 

We remarked earlier that the fluid congruence is 
necessarily hypersurface orthogonal. One also finds 
that it is further restricted by having the shear scalar 
related to the acceleration scalar according to 

uaua = -(t)O'abO'ab. (5.7) 

Finally, the expansion () is calculated to be 

() = -3B-2 oB + H-1 oB . (5.8) 
or ov 

From Eq. (5.4), (5.7), and (5.8) we thus conclude that, 
for the class of type [4] perfect fluid solutions under 
consideration, the fluid has nonzero shear, acceleration, 
and expansion. For the conformally flat solutions 
[a'(v) = 0], the fluid has zero shear and acceleration 
but nonzero expansion, and satisfies an equation of 
state of the form p = f(A). These solutions therefore 
belong to the Friedman class of perfect fluid space
times.25 

We conclude by discussing the question as to 
whether a region of one of the type [4] perfect fluid 
solutions under consideration can be suitably joined 
to a vacuum region of space-time. It is customary to 
require the Lichnerowicz junction condition to hold 
across a fluid-vacuum interface ~. This implies26 that 
the pressure vanishes on ~ and that the fluid velocity 
ua is tangent to ~. We thus investigate the existence of 
a hypersurface on which p = 0, such that 

(5.9) 

From Eqs. (4.7)-(4.9) it follows immediately that 
hypersurfaces on which p vanishes exist if and only if 
the constant b is nonzero. However, a straightforward 
calculation shows that for all the line elements with 
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b ¥= 0 [and a(v) nonconstant] the condition (5.9) is 
violated. We thus conclude that none of the present 
class of type [4] perfect fluid solutions can be joined to a 
vacuum solution with the Lichnerowicz junction 
condition being satisfied across the fluid vacuum 
interface. 
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APPENDIX: DERIVATION OF 
MAIN RESULTS 

In deriving Eqs. (3.2) and (3.3), it is not necessary 
to introduce a coordinate system explicitly. It is 
convenient, however, to use the tetrad freedom (2.3) 
with S = T = ° to set uaka = 2-!-, which means that 
the tangent field k a no longer corresponds to an affine 
parameter (as in Sec. 3). Equation (4.1) simplifies to 

(AI) 

By means of the field Eqs. (1.2), and (AI), the tetrad 
components12 <l>aP, iX, fJ = 0, 1,2, of the Ricci tensor 
become 

<1>00 = 2<1>n = <1>22 = U)(A + p) > 0, 

<1>01 = <1>02 = <1>12 = 0, 

A = R/24 = (A - 3p)J24. 

(A2) 

Since k a is tangent to the repeated p.n.c., which is 
assumed geodesic, we have 

K = 0, 'Yo = 'Y1 = 'Y2 = 'Y3 = 0, 'Y4 ¥= 0, (A3) 

where 'Ya , iX = 0, 1, ... , 4, are the tetrad components 
of the Weyl tensor.12 We use the Ricci and Bianchi 
identities in Newman-Penrose form (Ref. 1, pp. 34S-
51), with the former labeled 11 ,12 ,"',118 and the 
latter Ill' 112, ... , IIn. With the specializations 
(A2) and (A3), the Bianchi identities lIells simplify to 

-~<I>oo = (iT - 2iX - 2fJ)<I>oo, (A4) 

° = (~ - a')<I>oo => a' = ~, (A5) 

(D - .:1)<1>00 = (il - 2ft - 2y - 2y + 2p - p)<I>oo, 

(A6) 

-~<I>oo = (-v + T + 2iT)<I>oo, (A7) 

~<I>oo = (-2v + iT + 2T )<1>00' (AS) 

(D - .:1)<1>00 = 3a''Y4 

+ (2il - ft + p - 2p - 2€ - 2€)<I>oo. (A9) 

Equations (A4), (A7), and (AS) immediately imply 

iX + P = 7T - Y + T = O. (AIO) 

Since (D - .:1)<1>00 is real, (A6) entails 

p - p + ft - il = 0, (All) 

and, by means of (AS), (AlO), and (All), the imagi
nary part of the Ricci identity 112 reads 

(p - p)(p - il + € + € - Y - y) = 0. (AI2) 

Furthermore, by virtue of (A5) and (AIO), the 
expression 

vanishes identically. When it is evaluated using the 
Ricci identities 12, 17 , 110 , and lIS, one obtains for 'Y4 
the expression 

'Y4 = 2a(p - il + € + i - Y - y). (Al3) 

On the other hand, Eqs. (A6) and (A9) imply 

o = 3a''Y4 - 2(p - il + € + E - Y - y)<I>oo, (AI4) 

which with Eqs. (AI2) and (Al3) yields (p - ,o)'Y4 = 0 
and (<1>00 - 3a'a)'Y4 = 0, verifying (3.2) and (3.3). 

To proceed further, we substitute (AI) into the 
definition (5.2) of a'ab and introduce the expressions 
for the covariant derivatives ka .b, na'b in terms of the 
spin coefficients to obtain27 ' • 

a'aba'ab = (t)(p - il + € + i _ Y _ y)2, 

which when combined with (Al3) yields 

If we use (2.3) with R = 1, T = 0 to set a' = a, and 
introduce an affine parameter, we obtain the required 
equation (5.4). 

Retaining the nonaffin\! parameter, we next obtain 
further simplification of the spin coefficients. Equation 
II7 immediately implies € = i, while (A7) with (3.3) 
gives 

2~a' = -iTa'. (AI5) 

A linear combination of 14 , Is, 111, 113 , 115 , and 118 

yields an expression for ~(p - il + E + € - Y - y), 
which with (Al3) and (AI5) enables us to evaluate 
~'Y4' On comparison with lIs we obtain 

iT = S(1, (AI6) 

which when substituted with (AI5) in In and 113 
implies 

Op = oft = 0. (AI7) 
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The commutator28 (bD - Db) is applied to p and the 
operator b is applied to 11 yielding two expressions for 
bD p [simplified by (AI7)], which when equated 
necessitate 

11. = {3 = 7T = 0, => bE" = b(] = 0. (AIS) 

To summarize, we have the following restrictions 
on the spin coefficients: 

K = 11. = {3 = 7T = 0, 

P - P = It - P, = (] - a = A - ~ = 0, (A19) 

€ - € = (] - ~ = v - f = 0. (A20) 

Before completing the integration of the field Eqs. 
in Newman-Penrose form,it is essential to use the 
transformation (2.3) with S = T = ° to re-introduce 
an affine parameter (characterized by € + € = 0) 
along the p.n.c. We thus require that 

(€ + i) = R(€ + €) + DR = 0. (A21) 

Such a transformation will in general not preserve 
11. = P = 0 since 

(A22) 

However, because we have b( € + €) = 0, we can solve 
(A21) for R, subject to ~R = 0, and thus achieve 
€ + € = ° while preserving ex = (3 = 0.29 If we write 
R = 2i B, Eq. (AI) assumes the form (4.1). The 
conditions (AI9) are left unchanged while (A20) 
becomes 

CA23) 

With the aid of (3.3), the Ricci identities 11 and 12 
now reduce to (3.4) and (3.5), and the integration can 
be carried out as described following Eq. (4.2).30 

Finally, note that, as an immediate consequence of 
their definitions,l2 the spin coefficients K = 7T = € = ° 
immediately imply that the complex null bivector Vab 

of Eq. (5.1) satisfies Vab;Ckc = 0, as mentioned in 
Sec. 5. 
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A projection operator expansion is used to obtain the explicit forms of finite transformations in the 
triplet. octet, and decuplet representations of SU(3). The projection operators are obtained from the 
characteristic equations for the matrices in these representations. These characteristic equations are 
developed from known properties of the Ai, F;, and decuplet matrices; where multiple eigenvalues 
appear, it is shown that the relevant matrices also satisfy reduced equations in which no eigenvalue 
appears twice or more. General features of the method are discussed. 

1. INTRODUCfION 

The eightfold way! and related particle symmetries 
are usually discussed in terms of infinitesimal SU(3) 
transformations. These transformations are easy to 
use, and they provide us with enough mathematical 
apparatus to derive most consequences of the theory. 
As a result, the art of transforming quantities through 
finite angles in SU(3) space has been somewhat 
neglected. Since there are occasions where such trans
formations cannot be avoided, we describe in this 
paper a general method for handling them. The method 
can be applied to all representations of SU(3), but for 
practical reasons we restrict ourselves to the triplet, 
octet, and decuplet. 

Our approach to the problem is akin to an eigen
function expansion: If we can expand the quantity 
we wish to transform in terms of the eigenfunctions 
of the transformation operator, then we can carry out 
the transformation simply by replacing the operator 
by its appropriate eigenvalues. Now it often happens 
that, while we know the eigenvalues of an operator, 
we do not know the eigenfunctions. To avoid the 
labor of computing them explicitly, we shall therefore 
make our expansion in terms of a complete set of 
projection operators, one for each eigenvalue. As we 
shall see, these projection operators depend only upon 
the original transformation operator and its eigen
values. 

To obtain the projection operators, we consider an 
n-dimensional vector space spanned by vectors 

(l.l) 

Finite transformations in this space take the form 

(1.2) 

where A is an n X n Hermitian matrix and () is a 
parameter. By the Cayley-Hamilton theorem,2 A 
must obey the characteristic equation 

n 

o == II (A - cxk ) = 0, (1.3) 
k=l 

where CX1 , CX2' ••• , CXn are its eigenvalues. When the 
eigenvalues are all distinct, we define the matrices 

PI(A) = II (A - CX
k
), I = 1, 2, ... ,n, (1.4) 

k*l CX I - CXk 

and observe that, as a result of Eq. (1.3), 

PI(A)A = API(A) = CXIPI(A), no sum on I, 

PI(A)f{A) = f (A)PI (A) = f{CXI)PI{A) , (1.5) 

where f is any function of A. In particular, when we 
take fto be P meA), we find that 

(1.6) 

We can also use the partial fraction decomposition 
of 0-1 [see Eq. (1.3)] as a formal identity to prove that 

n 

IPI(A) = I, (1.7) 
1=1 

where I is the unit n X n matrix. Thus the PI(A) form 
a complete set of projection operators, and by virtue 
of Eqs. (1.5) and (I. 7) we obtain the desired expansion 
for a' in Eq. (1.2): 

n 
a' = ei9Aa = I ei9aZPI(A)a. (l.8) 

1=1 

When the eigenvalues of A are not all distinct, we 
cannot use this method as it stands because the 
denominator in Eq. (1.4) will have zero as a factor. 
However, we can modify it quite easily if A satisfies 
not only the full Eq. (1.3), which contains repeated 
factors, but also a reduced characteristic equation 
with no repeated factors. Let us therefore suppose that 
A satisfies the equation 

m 

II (A - cxk ) = 0, (1.9) 
k=l 

where CX1 , CX2, ••• , CXm , m < n, are the distinct eigen
values. We can then define projection operators exactly 
as in Eq. (1.4), except that k and 1 both run from 1 to 

673 
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m instead of 1 to n. The completeness relation of 
Eq. (1.9) is modified in exactly the same way, and so 
the expansion of Eq. (1.8) becomes 

m 

a' = ei8A a = L ei8aIPlA)a. 
1=1 

(LlO) 

In the next three sections of the paper, we study the 
characteristic equations for the three-, eight-, and 
ten-dimensional representations of SU(3), and we 
show that, whenever a repeated root occurs, the 
appropriate matrix satisfies a reduced equation. To 
carry out this program, we shall need certain proper
ties of the SU(3) matrices and of the spaces in which 
they operate; since many of the properties have 
already been discussed by different authors,3-7 we 
shall review them without giving proofs. 

In the fifth section of the paper we consider finite 
transformations. From the results of the previous 
sections, we give explicit formulas for the triplet, 
octet, and decuplet representations of SU(3). 

2. CHARACTERISTIC EQUATIONS 
FOR THE TRIPLET 

The three-dimensional representation of SU(3) 
consists of matrices Ai, i = I, 2, ... , 8, which obey 
the standard commutation and anticommutation 
rulesl 

[Ai' Ai] = 2ij;ikAk' 

{Ai, Ai} = tbJ + 2diJkAk · (2.l) 

These matrices are traceless and normalized so that 

Tr (Ai) = 0, Tr (AiAi) = 2bii · 

Each of them satisfies the identity 

M3 - t Tr (M2)M - ! Tr (M3)I == 0, 

(2.2) 

(2.3) 

as can be shown with the aid of the Cayley-Hamilton 
theorem.2 We shall use this result to study the charac
teristic equations of the Ai, but, before we do so, we 
must learn something about the geometry of the octet. 

The octet space of SU(3) is spanned by real vectors 
'K = (7Tl' 7T2, ... ,7Ts). As is well known, we can 
construct two invariants and a dual vector from 1t: 

x = 7Ti7Ti' Y = diik7T i 7T j7Tk' 

TIi = diik7Ti7Tk· 

(2.4) 

(2.5) 

The invariant X is the square of the norm of 1t, and it 
is never negative; the invariant Y, on the other hand, 
is the inner product of 1t and its dual vector II, 

(2.6) 

and it can be positive, negative, or zero. To determine 

the properties of II, we use a property of the d
coefficients,3.5 

diiadkla + dikadjla + diladika 

= HbiAI + bikbjl + bilbik), (2.7) 

which can be derived from Eq. (2.3). We then find that 
the norm of II is proportional to X, 

(2.8) 

and that its dual is a linear combination of 1t and 
itself, 

dijk7TiTIk = !X7Ti, 

diikTIiTIk = iY7Ti - !XTI i . (2.9) 

Because the vector II + f11t must have a nonnega
tive norm for all values of the parameter f1, the value 
of the invariant Y is always bounded by 

(2.10) 

When Y vanishes, the vector 1t is orthogonal to its dual 
[Eq. (2.7)], and it is called an "s-vector" by Michel 
and Radicatti.6 When Y reaches its maximum absolute 
value, 1t is parallel to its dual, 

Y = ±(X3/3)t, IT; = ±(X/3)t 7Ti' (2.11) 

and it is known as a "q-vector."6 The significance of 
this classification will become apparent below. 

We now define the traceless matrix 

(2.12) 

Since it satisfies the identity of Eq. (2.3), its character
istic equation is 

(A . 7T)3 - X(A . 7T) - i YI = ° 
and its eigenvalues satisfy 

Cl3 - XCl - i YI = 0. 

(2.l3) 

(2.l4) 

This equation will have three real roots as long as the 
condition of Eq. (2.10) is fulfilled. They are 

Clk = 2(X/3)! cos H cp + 2k7T), k = 1,2,3, 

cos cp = 3!Y/(X)!. (2.15) 

When Y is zero, the roots are 

ClI = -.J X, Cl2 = 0, Cla = +.J X. (2.16) 

If we assume that 1t is a unit vector (X = 1), then 
Eq. (2.16) implies that the operator teA' 7T) has the 
same eigenvalue spectrum as does the isospin matrix 
tA3 in the standard representation. l In other words, 
when 7T is an s-vector, teA' 7T) is an element of an 
SU(2) subalgebra.6 
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When the absolute value of Y is at a maximum, 
two of the three roots coincide with one another. 
The roots are 

[:r=(X/3)!, :r=(X/3)i, ±2(X/3)~] for Y = ±(xaf3)!. 

(2.17) 

For 7t a unit vector with negative Y, the matrix 
(A . 1T) has the same spectrum as As in the standard 
representation.! Therefore (A . 1T) behaves as a hyper
charge-type operator whenever 7t is a q-vector. 6 

In general IYI lies somewhere between zero and 
(X3f3)! and 7t is neither an s-vector nor a q-vector. 
Consequently, the matrix (A' 1T) has three distinct 
eigenvalues, but it is not an isospin-type operator. It 
is always possible, however, to find linear combina
tions of 7t and n which do fall into the s- and q-vector 
categories; therefore, we can always convert an arbi
trary matrix (? . 1T) into an isospin or a hypercharge 
operator. 

It remains for us to show that when Y = ±(X3/3)~, 
the matrix (A' 1T) satisfies a quadratic equation as well 
as the cubic one of Eq. (2.13). To do this, we multiply 
the second equation of (2.1) by 1Ti1Tj and sum over the 
indices i and). We obtain 

(A . 1T)2 = iXI + O .. IT). 

From Eq. (2.11) we can rewrite this as 

(A. 1T)2 = iXI ± (X(3)!(A . 1T), Y = ±(X3/3)~, 
or 

[(A'1T) ± (Xj3)!J[(J. . 1T) :r= 2(Xj3)iJ = 0, 

y = ±(X3j3)1,. (2.18) 

This is exactly the equation we would expect from 
Eq. (2.17) if we were to drop one of the repeated roots. 

Up to now we have been using the standard repre
sentation (3). We now turn to the conjugate repre
sentation (3), whose matrices are related to those of 
the (3) representation by 

(2.19) 

where T denotes transpose. The Xi satisfy the first 
equation of Eq. (2.1) and the conditions of Eqs. 
(2.2) and (2.3); but instead of the second equation 
of Eq. (2.1) they obey 

characteristic roots are therefore opposite in sign from 
those of (A • 1T), but the multiplicities remain the same. 
In other words, the properties of the (3) representation 
can be obtained directly from those of the (3) by the 
replacement 

(2.21 ) 

in Eqs. (2.13) and (2.15)-(2.18). 

3. THE OCTET 

From the f and d coefficients of Eq. (2.1) we can 
construct eight-dimensional matrices 

(FJmn = -ij;mn' (Di)mn = dim,,' (3.1) 

which obey the commutation rules 

[F;, Fj ] = ij;jJk' [F;, DJ = ijiilcDk' (3.2) 

The Fi form an eight-dimensional representation of 
SU(3) and the Di are operators transforming as an 
octet with respect to the group. Because Di and Fi 
are respectively symmetric and anti symmetric matrices, 
we can rewrite the second equation of (3.2) as3 

FkD{ + FIDk = DIFk + D,fl = dk1mFm' (3.3) 

From Eq. (2.7) and various Jacobi identities for A
matrices, we can show that3 •5 

{Fu Fj } + 3{Di' D j } = 2r5 i J, 

{F;, FJ = r5ul + 3diJkD" - Rij' 

(Rij)mll = Oi,,/J11l + bii)jm' 

(3.4) 

(3.5) 

Equations (3.3), (3.4), and (3.5) are the basic equa
tions that we need to examine the characteristic 
equations for the octet matrices. 

A. The General Equation 

We begin with some preliminary results. Multi
plying Eq. (3.3) by 1Tk1T1 and summing, we obtain 

2(F' 1T)(D . 1T) = 2(D . 1T)(F' 1T) = (F' TI), (3.6) 

where the notation (A . B) represents Zk AkBk • Since 
the quantities in Eq. (3.6) are matrices, we can operate 
with them on the column vector 7t: 

(2.20) But, because Fk is totally antisymmetric, 

Because of this, the representations Ai and Xi cannot 
be related to one another by unitary transformations, 
and hence they are not equivalent representations of 
SU(3). 

To obtain the characteristic equation for (X· 1T), we 
merely replace (A '1T) by (-X· 1T) in Eq. (2.13). The 

and so 
(F' fI)ap1Tp = ifappfIp1T{J = 0. 

From this result and Eq. (3.2) we find that 

(F' 1T, F· IT] = 0. 

(3.7) 

(3.8) 
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We may now multiply Eq. (3.5) by 7Ti Il j and use 
Eqs. (3.8) and (2.9) to write 

2(F' 7T)(F' 11) = Y + X(D' 7T) + Rij7Ti Il j • (3.9) 

To eliminate the last term of Eq. (3.9), we multiply by 
(F' 7T) and use the anti symmetry of Fk together with 
Eq. (3.7); then with the aid of Eq. (3.6) we obtain 

[4(F' 7T)2 - X](F' 7T)(D' 7T) = Y(F' 7T). (3.10) 

To eliminate (D . 7T) from this equation, we note that 
from Eq. (3.4) we have 

(F' 7T)2 + 3(D . 7T)2 = XI. (3.11) 

We therefore square both sides of Eq. (3.9) and find 
that6 

(F' 7T)2{[4(F' 7T)2 - X]2[X - (F' 7T)2] - 3Y2} = 0. 

(3.12) 

Equation (3.12) is of degree eight in the (8 x 8) 
matrix (F' 7T), and hence it must be the characteristic 
equation that we would obtain from the Cayley
Hamilton theorem. We note that zero is a repeated 
eigenvalue and that the other six eigenvalues may 
or may not be distinct from one another. Thus we 
must show that (F' 7T) satisfies reduced equations if 
we are to develop projection operators along the lines 
described at the beginning of the paper. To pursue 
this question, we shall examine separately the three 
cases in which 1t is an s-vector, a q-vector, or neither. 

B. Equation for s-Vectors 

When 1t is an s-vector (Y = 0), the characteristic 
equation (3.12) has two single roots (±,jX), and three 
double ones (0, ±t,jX). We therefore expect (F' 7T) 
to obey the reduced equation 

(F' 7T)[4(F· 7T)2 - X][X - (F' 7T)2] = 0. (3.13) 

To prove that it does indeed obey Eq. (3.13), we multi
ply Eq. (3.10) by (D· 7T) and use the fact that Y = 0 
to write 

(F· 7T)[4(F' 7T)2 - X)(D . 7T)2 = O. 

Equation (3.13) follows from this and Eq. (3.11). 

c. Equation for q-Vectors 

When 1t is a q-vector (3Y2 = X3), Eq. (3.l2) has 
zero as a quadruple root, and ± (3 i Xf2) as double 
roots. To derive the reduced equation in this case, we 
go back to Eq. (3.5) and multiply by 7Ti7T; to obtain 

2(F·7T)2 = X + 3D' n - R;j7T;7T j • (3.14) 

We eliminate the last term by multiplying by (F' 7T), 

and then with the aid of Eq. (2.11) we find that 

2(F' 7T)3 = XCF· 7T) + (3Y/X)(F' 7T)(D .7T). 

Using Eq. (3.6) and (2.11) again, we can rewrite this 
as6 

(F· 7T)[4(F' 7T)2 - 3X] = O. (3.15) 

This is exactly the reduced equation we require 
since it contains each of the three distinct eigen
values once and only once. 

D. Equation for General Vectors 

When 1t is neither an s-vector nor a q-vector, equa
tion (3.12) has zero as a double root. To determine the 
other roots, we note that since the inequality of Eq. 
(2.10) holds, we can define 

The remaining roots can then be expressed as 

OCk = cos Mtp + (k - 1)7T), k = 1,2,3,4,5,6, 

(3.17) 

and they are all distinct from one another. Therefore, 
in this case we need only eliminate one of the (F· 7T) 
factors of Eq. (3.12). 

To do this, we write 

(F· 7T)[4(F· 7T)2 - X)2(D . 7T)2 

== {(F' 7T)[4(F' 7T)2 - X](D· 7T)} 

x {[4(F· 7T)2 - XJ(D . 7T)} 

= Y(F· 7T){[4(F' 7T)2 - X](D . 7T)} 

= y2(F· 7T), (3.18) 

where we have used Eq. (3.10) twice. From Eq. (3.18) 
and (3.11), we obtain the required equation, namely 

(F' 7T){[4(F' 7T)2 - XJ2[X - (F· 7T)2] - 3Y2} = O. 

(3.19) 

This completes our discussion of the octet matrices. 

4. THE TEN-DIMENSIONAL REPRESENTATION 

Besides the standard commutation rules 

(4.1) 

the matrices B; of the ten-dimensional representation 
also satisfy8 

(4.2) 
and 

8 

! BiB; = 61, (4.3) 
i=l 
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where I is the 10 x 10 unit matrix. We can use these 
properties to construct symmetric second- and third
rank tensors 

and making use of Eq. (4.10). After some lengthy 
manipulation we obtain a characteristic equation of 
the tenth degree: 

~j = {Bi , Bj } - tdijkB k - tbj ), 

~jk = ! BjBjBk 

(4.4) (B' 7T)[4(B· 7T)3 - 3(B' 7T) + cos Vi] 

x [4(B' 7T)3 - 3(B' 7T) - cos "1'] 
all permutations 

- 17A(bjjBk + bjkBi + bkiB j) 

- ~l-(dijpBpBk + djkPBpBi + dkiPBpBj) 

(4.5) 

which are traceless: 

T~1l- = di~fJTll-fJ = di~fJTIl-(lk = T«ll-k = O. (4.6) 

Since there are 27 independent Tij and 64 inde
pendent Tijk , these tensors combine with the nine 
matrices B; and I to form a complete set in the space 
of 10 x 10 Hermitian matrices, and any member of 
this space can be written as a linear combination of 
them. In particular, the fourth-rank tensor 

Sijkl = TjikBI + TjklBi + TkUBj + TUjBk (4.6') 

can be expressed as9 

Siikl = {t(diiIl-TI1-kI + dklJll-ij) + H(oijTkl + 0kITii) 

- Hdiill-dkl(JTll-fJ + cyclic permutations of j, k, I}. 

(4.7) 

From this result we shall deduce the characteristic 
equation for (B' 7T) = !~=l Bi 7Ti • 

A. The General Equation 

Multiplying both sides of Eq. (4.7) by 7T;7T j 7Tk7T1 and 
summing over the indices, we obtain an equation for 
(B, 7T) and (B' II): 

3(B . II)2 + [3X - 12(B . 7T)2](B . TI) + 4(B . 7T)4 

- 4X(B . 7T)2 + 6 Y(B . 7T) = O. (4.8) 

Next we multiply Eq. (4.7) by 7Tj7Tj1Tkn/, and after some 
tedious algebra we obtain another equation: 

- 6(B . 7T)(B . TI)2 + [4(B . 7T)3 - X(B . 7T) + 3 Y] 

x (B, n) - 2X(B' 7T)3 - 2 Y(B . 7T)2 + 2X2(B '7T) 

= O. (4.9) 

To eliminate (B' TI)2, we multiply Eq. (4.8) by 2(B' 7T) 
and add the resultant to Eq. (4.9): 

[20(B' 7T)3 - 5X(B' 7T) - 3Y](B • TI) 

= 2(B . 7T)[4(B . 7T)4 - 5X(B . 7T)2 

+ 5Y(B' 7T) + X2]. (4.10) 

We can now eliminate (B' TI) altogether by multi
plying Eq. (4.8) by [20(B' 7T)3 - 5X(B· 7T) - 3Y]2 

x [4(B' 7T)3 - 9(B' 7T) - 3~ sin Vi] = 0, (4.11) 

where we have set X = I and 3f Y = sin "I' [see Eq. 
(3.16)]. 

When I Yilies between zero and its maximum value, 
Eq. (4.11) has ten distinct roots. Seven of them, 
namely 

CXo = 0, CXk = cos!["I' + (k - 1)7T], 

k = 1,2,3,4,5,6, (4.12) 

are the same as in the eight-dimensional representa
tion [see Eqs. (3.17) and (3.19)], but the remaining three 
are new: 

CXk = 3~ cos i[21j! + (4k - 1)7T], k = 7,8,9. (4.13) 

When Y is zero, there are three double roots (0, ±-i) 
and four single roots (± 1, ±!); this spectrum is 
exactly the same as that of T3 in the tenfold repre
sentation. When Y = -1/J3, the eigenvalues of 
Q = (2/J3)(B' 7T) run from + 1 to -2 in unit steps, 
and their multiplicities decrease from fourfold for 
(+ 1) to singlefold for (- 2), again in unit steps. This 
spectrum matches exactly the spectra of hypercharge 
and electric charge. l 

We now show that when 1t is either a q-vector or an 
s-vector, (B, 7T) obeys an appropriate reduced equa
tion. 

B. Equations for s-Vectors and q-Vectors 

When Y is zero, Eq. (4.10) becomes 

5(B' 7T)[4(B . 7T)2 - X)(B .il) 

= 2(B . 7T)[4(B . 7T)2 - X][(B . 7T)2 - X], (4.14) 

and (B' TI) can be eliminated from Eqs. (4.8) and (4.9) 
to yield 

15(B' 7T)(B' TI)2 = 2(B· 7T)[(B' 7T)2 - X] 

X [2(B' 7T)2 - 3X]. (4.15) 

We now multiply Eq. (4.15) by [4(B' 7T)2 - X] and 
use Eq. (4.14) twice. In this way we obtain an equa
tion, namely 

(B' 7T)[4(B . 7T)2 - X][(B . 7T)2 - X] 

x [4(B' 7T)2 - 9] = 0, (4.16) 

in which each eigenvalue appears once and only once. 
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When Y = -11-J3 and X = 1, we find from Eq. 
(2.11) that TIi = (-11-J3)7Ti. Equation (4.8) becomes 

(B· 7T)[4(B . 7T)3 + (4-J3)(B . 7T)2 

- 3(B· 7T) - 3-J3] = 0 (4.17) 

or, in terms of Q = (2/-J3)(B . 7T), 

Q(Q + 2)(Q2 - 1) = o. (4.18) 

Again, the distinct eigenvalues appear only once in 
the equation. Thus, in both the s-vector and the q
vector cases, (B· 7T) obeys a reduced equation. 

C. The Conjugate Decuplet 

It is not difficult to show that the matrix B. 
obtained by taking the negative transpose of Bi , obey~ 
the standard SU(3) commutation rules. However, 
because 

we conclude that 

(5.5) 

If IXk' k = 1, 2, ... , m, denote the distinct eigen
values of M· 7T = ~Z=lMi7Tiandif PI(M· 7T) is defined 
as in Eqs. (1.4) and (l.5), we can rewrite Eq. (5.5) as 

ei8di'·")'¥pe-i6(F.,,) = ~ '¥T[PI(M . 7T)]Tpei8a,. (5.6) 
I 

This is our basic formula for finite transformations. 
We now apply it to the special cases of the octet, 
triplet, and decuplet; for convenience we shall assume 
from now on that 1t is a unit vector, 

R 

X = ~ 7Ti7Ti = 1. 
i=l 

A. The Triplet 

(5.7) 

(4.19) In the three-dimensional representation (3) the 

the relation of Eq. (4.2) becomes8 

dijkBiBj = -iBk' 

matrices Mi are equal to HAi ) and the transformation 
operator is ei<8/2W,,). The projection operator for the 

(4.20) eigenvalue IXk of (A· 7T) is, in general, 

and so the Bi give us a representation which is not 
equivalent to the original Bi . The characteristic equa
tion for this conjugate decuplet is obtained by re
placing (B . 7T) by - (B· 7T) everywhere in the preceding 
discussion. As a result, the signs of the eigenvalues 
change, but the multiplicities remain the same. 

5. FINITE TRANSFORMATIONS 

We denote the infinitesimal generators of SU(3) 
by Fi , and any matrix representation of them by Mi. 
The operators and the matrices then satisfy the 
commutation rules 

and 

respectively. 

(5.1) 

(5.2) 

A tensor operator 'Fa is said to transform according 
to the representation Mi if 

[Fi , 'F p] = 'IfT(Mi)TP. (5.3) 

From this and the relation 

8 

(p. 7T) = "iFk7Tk' (5.4) 
k=l 

Pk = [IXiA . 7T? + IX;(A . 7T) + 2Y/3]/2(IXk + Y), 

(5.8) 

where IXk is given by Eq. (2.15). When 1t is an s-vector, 
the eigenvalues become + 1,0, -1 and the appropriate 
projection operators are 

P ±l = H(A . 7T)2 ± (A· 7T)], Po = [1 - (A. • 7T)2] , 

for Y = O. (5.9) 

When 7T is a q-vector, there are only two distinct 
eigenvectors, 1/~3 and -2/~3, and the projection 
operators are 

Puvs = H3!(A . 7T) + 2], 

P-2/va = H -3!(A . 7T) + 1], Y = -1/-J3. (5.10) 

From Eqs. (5.5) and (5.6) we can express the 
transformation operator as 

ei (6/2)(;'.1T) = .2 Pk(A. . 7T)ei6ak/2 
k 

= A + B(A . 7T) + C(A . 17)2, (5.11) 

where the coefficients A, B, and Care 

(5.12) 

in the general case, 

A = 1, B = i sin 012, C = (cos 012 - 1) (5.13) 
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in the s-vector case, and 

A = H2eiO/2y'3 + e-iO/y'3], 

B = (1/v!3)[eiO/2 y'3 _ e-iO/y'3], 

c=o 
in the q-vector case. Given the relations 

(A . 7T)2 = (A . TI) + iI, 

(5.14) 

rx/(rx + Y) = 2/(3oc2 - 1), (5.15) 

which follow from Eqs. (2.1), (2.14), and (5.7), we 
see that the general result of Eqs. (5.11) and (5.12) is 
identical to the expression for eila

'
A

) derived from a 
different point of view by Macfarlane, Sudbery, and 
Weisz.s Equation (5.l3) is the same as the expression 
for e;W/2)J.n in the three-dimensional representation 
of SU(2)10; this is not surprising in view of the fact 
that (A' 7T) belongs to an SU(2) subgroup of SU(3) 
whenever 1t is an s-vector. The q-vector case of Eq. 
(5.14) is the only one in which the transformation 
operator is linear in (Je • 7T). 
_ For the conjugate three-dimensional representation 

(3), the eigenvalues of 0:, 7T) are opposite in sign 
from those of (A' 7T), and the corresponding pro
jection operators can be obtained by applying Eq.· 
(2.21) to Eq. (5.8). The expression for e;(6/2)(J..1T) then 
becomes 

(5.17) 

in general, 

A = 1, jj = i sin (J12, C = (cos (J12 - 1) (5.18) 

in the s-vector case, and 

A = H2e-iO/2y'3 + eiO/y'3], 

jj = (1/v!3)[ei6fy'a - e-iOf2
y'3], (5.19) 

C=O 
in the q-vector case. As a check on these results, we 
observe that they can also be obtained by taking the 
transpose of Eq. (5.l1), replacing fJ by (-fJ), and 
noting that OCk = - rxk • 

B. The Octet 

In the case of the octet representation the matrices 
Mi are equal to the Fi of Eq. (3.1) and the trans
formation operator is e;O(F'1T). The eigenvalues of 
(F' 7T) are 

rxo = 0, 

rxk = cos Hlp + (k - 1)7T], k = 1,'" ,6, (5.20) 

[see Eqs. (3.16) and (3.17)1 and the projection op
erators are 

(5.21) 

p. = (F, 7T)[4rx;(F . 7T)2 + 4rx~(F' 7T) + cos 1p][4(F' 7T)3 - 3(F' 7T) + cos 11'] 

, 6 cos 11' rx;(2oc; + cos 11') 
i = 1, 3, 5, (5.22) 

p. = -(F' 7T)[4rx;(F' 7T)2 + 4rx;(F' 7T) - cos 1p][4(F' 7T)3 - 3(F' 7T) - cos 11'] 
, 6 cos lprx;(2rxj _ cos 11') , j = 2,4,6. (5.23) 

To expand eiOF
'

1T in terms of the PI' we use the fact 
that [see Eq. (3.17)] 

(5.24) 

We then find that 
6 

eiOF
'

1T = 1 + ~ AnCF . 7Tt, (5.25) 
n=l 

where 

Al = ~ (i sin (Jrxi ) cos 11' , 
i=I.3,5 3rx;(2rx i + cos 11') 

A _ '" (~ (4rx; - 3) cos fJrx i ) 
2- ~ 2 + , 

=1,3.5 cos 11' 3rx;(2rx; + cos 11') 

A3 = L 4( cos 11' - 3rxi)(i sin (Joc;) 

;=1,3,5 3 cos 1p(2rxi + cos 11') , 

A 
'" (8 4( cos 11' - 3rxi) cos fJoc. ) 4= 4, --2-+ ' , 

i=1,3,5 cos 11' 3( cos 11' )oc;(2oc; + cos 11') 

As = 2: 16rx;(i sin ()OCi) , 

;=1,3,53 cos 1p(2rx; + cos 11') 

A6 = 2: ~ (_1_ _ cos ()OCi ) • 
;=1,3,53 cos 11' cos 11' 20Ci + cos 11' (5.26) 

When 1t is an s-vector, (F' 7T) has five eigenvalues 
instead of seven, 

rxk = 0, ±i, ± 1, (5.27) 
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and the corresponding projection operators are (B' 7T)(COS 1jJ - R;)MN 
p.=------~--~~~--~~---------

Po = (4(F' 7T)2 - 11(F' 7T)2 - 1], J 6rxj cos 1jJ(41X~ - rx;)(4rx~ - 9IXj - (3J3) sin 1jJ]' 

P ±! = =j=HI ± 2(F' 7T)][(F' 7T)3 - (F' 7T)], (5.28) 

P ±1 = ±H1 ± (F' 7T)][4(F' 7T)3 - (F' 7T)]. 

The coefficients An of Eq. (5.25) in this case are 

Al = (iI3)(8 sin el2 - sin e), 

A2 = (.!i- cos el2 - t cos e - 5), 

As = UI3)( 4 sin e - 8 sin eI2), (5.29) 

A4 = (4 + t cos e - l.l- cos eI2), 

As = A6 = O. 

When 7t is a q-vector, the eigenvalues are 

IXk = 0, ±3!/2, 

and the projection operators become 

Po = t[3 - 4(F' 7T)2], 

(5.30) 

P± = ±(1/J3[1 ± (2/-./3)(F· 7T)](F' 7T). (5.31) 

j = 2,4,6, 

(B, 7T)[R" + (3J3) sin 1jJ)LM 

31Xk ( 4rx~ - 3rx,,)( 4rx~ - 3rx" + cos 1jJ)( 4rx! - 3rxk - cos 1jJ) , 

k = 7,8,9. 

(5.34) 

When 7t is an s-vector, there are seven distinct eigen
values, namely 0, ±t, ± 1, ±-i, and the corresponding 
projection operators are 

Po = (-lff)[(B' 7T)2 - tH(B' 7T)2 - 1] 

x [(B' 7T)2 - t], 
P±! = -HB' 7T ± t)(B' 7T)[(B' 7T)2 - 1) 

x [(B' 7T)2 - t]' 
PH = (-1% )(B' 7T ± 1)(B' 7T)(B' 7T)2 - t] 

x [(B' 7T)2 - -£-1, 

(5.35) 

P±~ = -lr,(B' 7T ± -i)(B' 7T)[(B' 7T)2 - tl 
The corresponding coefficients in the expression of X [(B' 7T)2 - 11. 
Eq. (5.25) for e iO(F'1f) are 

Al = (2i/J3) sin (eJ3/2), 

A2 = t(cos (eJ3/2) - 1), 

In the case of a q-vector, the only distinct eigenvalues 
of (B, 7T) are 0, ±tJ3, -J3, and the appropriate 

(5.32) projection operators are 

As = A4 = As = A6 = 0. 

As in the s-vector case of the triplet representation 
[see Eq. (5.18)], so here the coefficients A 1 and A 2 are 
such that the matrix (2/-./3)(F· 11) behaves as a 
member of a three-dimensional representation of an 
SU(2) subgrouplO of SU(3). 

C. The Decuplet 

The matrices representing the decuplet are given 
by the B; of Eqs. (4.1)-(4.3). In general they have 
ten distinct eigenvalues [see Eqs. (4.12) and (4.13)], 
and hence there are ten projection operators. In 
terms of the quantities 

L = 4(B . 7T)3 - 3(B . 7T) + cos 1jJ, 

Po = (-4/3J3)[(B' 7T)2 - tH(B' 7T) + J3], 

P ±}y3 = (4/9-./3)(B . 7T ± t-./3)(B . 7T)[(B . 7T) + J31, 

P_y3 = (-4/9-./3)(B . 7T)[(B . 7T)2 - n (5.36) 

From the general expansion 

e iO (B'1f) = .2 PI(B . 7T)eiOa z, (5.37) 
I 

we can express the transformation matrix as a poly
nomial in (B' 7T): 

eiO(B'rr) = 1 + .2 An<e)(B . 7T)n. (5.38) 
n 

In general the polynomial is of the ninth degree [see 
Eq. (5.34)1, but it reduces to the sixth degree when 7t 

is an s-vector and to the third degree when 7T is a 

M = 4(B . 7T)3 - 3(B . 77) - cos "P, q-vector; 
(5.33) 

N = 4(B . 77)3 - 9(B . 77) - (3J3) sin 1jJ, An = ° for 11;;::: 10, in general, 

R; = 4ct.;(B . 77)2 + 4ct.;(B . 7T), 

they are 

Po = LM N 1(3~ sin 1jJ cos2 1jJ), 

(B' 7T)(Ri + cos 1jJ)NL 
p.= , 

• 61X; cos 1jJ( 41X~ - ct.i)[4ct.; - 9ct.i - (3J3) sin 1jJ] 

i = 1, 3, 5, 

11 ;;::: 7, 7t an s-vector, (5.39) 

11 ;;::: 4, 7t a q-vector. 

The specific formulas for the An can be obtained by 
comparing Eqs. (5.37) and (5.38); they are very 
complicated and so we shall not quote them here. 

The conjugate ten-dimensional representation (to) 
is described by the Bi matrices of Eqs. (4.19) and 
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(4.20). Its eigenvalues are opposite in sign from those 
of the (10) representation. In all cases, the appropriate 

projection operators for the (10) can be obtained from 
those of the (10) by means of the substitution 

(B' 7T) -'>- -(8' 7T), 

(5.40) 
where ~k = -I:/.k· 

6. DISCUSSION 

We have now completed the task of finding explicit 
forms for finite transformations in the triplet, octet, 
and decuplet representations of SU(3). The projection 
operator method we have used is a general one which 
can, in principle, be applied to all representations. 
In practice the main problem associated with the 
method is that of finding the characteristic equations 
in the various representations. 

We believe that the device we used to obtain the 
characteristic equation of the ten-dimensional rep
resentation can be extended to all other triangular 
representations9 ; however, because we have to con
sider tensors of higher and higher rank, the com
plexity of the device probably increases very quickly. 
As far as other types of representation are concerned, 
we are not sure what general tricks are available. 

Throughout our analysis we have separated the 
s- and q-vector cases from the general one. In both 
instances multiple eigenvalues appear, and we have 
to turn from the general characteristic equation to the 
reduced one in which no root appears more than 
once. It is possible, however, to pass from the general 
case to the s- and q-vector by means of careful limiting 
procedures. The rules are that if I:/. is a single root of 
M . 7T and f3 is an n-tuple root, then (M' 7T - f3)n ( 
(I:/. - f3)n should be replaced by (M' 7T - f3)/(1:/. - f3) 
and (M' 7T - f3),,-1(f3 - f3)n-l by lin. The reason 
for using 1 In in the second case is that there are 
formally n projection operators for f3 when it becomes 

an n-tuple root. The validity of these rules is easy to 
demonstrate as long as the reduced characteristic 
equation is satisfied. 

Finally we note that the projection operator method 
can be used for many other groups besides SU(3). 
In fact the s-vector case of (..1. • 7T) [see Eqs. (5.11) and 
(5.13)] and the q-vector case of (F' 7T) [see Eqs. 
(5.25) and (5.32)] are simple examples of its use for 
SU(2). The method is probably a good one to start 
with for any group, but it may not be the best in all 
cases. 

Note added in proof" Y. Lehrer-lIamed (Proc. 
Cambridge Phil. Soc. 60, 61 (1964)] has given a 
general formula expressing any function I(A) as a 
polynomial in the matrix A with coefficients deter
mined by the eigenvalues of A. He applied the formula 
to finite S U(2) transformations. The author is grateful 
to Dr. Y. Dothan for drawing his attention to the 
work of Lehrer-Ilamed. For other methods for 
dealing with finite SU(3) transformations, see D. F. 
Holland (J. Math. Phys. 10, 531 (1969)] and references 
contained therein. 
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V. l. Ogievetskii and l. V. Polyvarinov, Yad. Fiz. 4, 853 (1966) 
[SOY. J. Nucl. Phys. 4, 605 (1967)]. 

5 A. J. Macfarlane, A. Sudbery, and P. H. Weisz, Commun. 
Math. Phys. 11, 77 (1968). 

6 L. Michel and L. A. Radicatti, The Geometry of the Octet 
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pecially the appendix written in cooperation with Dr. P. Tarjanne. 

8 S. P. Rosen, J. Math. Phys. 5, 289 (1964). The result follows 
from Eqs. (6) and (26) of this paper together with the definition 
B; = o.iBi)PT' 
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10 See, for example, A. Messiah, Quantum Mechanics, Vol. II 

(North-Holland, Amsterdam, 1962), p. 578. 
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We discuss the restrictions imposed on a spin-2 meson theory when the source is related to the stress 
tensor. We consider a spin-2 meson theory with a field-source identity, which postulates that the 
traceless part of the stress tensor is proportional to the irreducible part of the spin-2 meson field. We 
examine the consequences of imposing the field-source identity and Lorentz covariance on the spin-2 
meson theory. We show that the field-source identity determines the parts of the singular terms in the 
stress-tensor equal-time commutation relations which are the most singular in the coupling strength g. 
It further requires that some of the singular terms be q-numbers. We obtain the constraints imposed on 
the field-dependence of the source J/lv(x) by the field-source identity and the Lorentz covariance con
ditions. We show that as a consequence of some of these, the interaction termgJ/lv(x) must be nonlinear 
in the coupling strengthg. 

1. INTRODUCTION 

In an earlier paper we have discussed the general 
noncommutation and field-dependence requirements 
on the source of a spin-2 field when the source is 
assumed to be divergenceless. The physically most 
interesting divergenceless second-rank symmetric ten
sor is the stress tensor, and accordingly it is of interest 
to examine the restrictions on the theory when the 
source of the spin-2 field is related to the stress 
tensor. 

We have elsewhere! discussed how the hypothesis 
of the tensor-meson dominance2 of the matrix elements 
of the stress tensor may be expressed in a field theory 
by a field-source identity in a manner analogous to the 
field-current identity3 that has been postulated for 
expressing the hypothesis of vector-meson dominance4 

of the matrix elements of the electromagnetic current. 
For a theory with one neutral spin-2 meson, the field
source identity takes the form 

0l'vCx) = (m2jg)[U/l v(x) - 'I'}/lVu(x)], (Ll) 

where 0/l.(x) is the stress tensor, u(x) is the trace Ua", 
and U/lv(x) is the renormalized field operator for a 
neutral spin-2 field with mass m. The coupling strength 
g is defined by taking the source of the spin-2 field to 
be gJ"v, with a suitable normalization of the source 
J/l V , as discussed in Ref. 1. 

In a spin-2 meson theory with a field-source 
identity, the source of the spin-2 field is also closely 
related to the stress tensor; the relation between their 
matrix elements has been discussed in Ref. 1. In 
this paper, we examine what restrictions are imposed 
on such a theory by the requirements of Lorentz 
covariance, in addition to the general field dependence 
and noncommutation requirements discussed earlier. 5 

The restrictions imposed by Lorentz covariance on 

the spin-2 meson theory are taken into account by 
considering the equal-time commutation relations 
(ETCR's) among the components of the stress 
tensor. 6,7 The general form of the stress-tensor ETCR 
consistent with Poincare invariance and locality has 
been discussed by Boulware and Deser.7,s 

We obtain the following results: 
(1) The field-source identity determines the parts 

of the singular terms in the stress-tensor ETCR's 
which are c-numbers and which are the most singular 
in the coupling constant g. 

(2) Because of the field-source identity, it is 
necessary that some of the singular terms in the stress
tensor ETCR's be q-numbers. 

(3) The field-source identity and the stress-tensor 
ETCR's impose explicit constraints on the nature of 
the field dependence of the source density Jl'v(x) in 
the field equations for the neutral spin-2 meson. 

(4) As a consequence of some of these constraints, 
the interaction term gJl'v(x) for the spin-2 field must 
be nonlinear in the coupling strength g. 

The first result is analogous to the result following 
from the field-current identity in a vector-meson 
theory, where the identity determines the singular 
terms in the ETCR's among the vector currents. 9 

The most important restrictions on the theory are 
those imposed by Lorentz covariance, expressed by 
the stress-tensor ETCR's stated in Sec. 2. The con
straints on the field dependence of the source which 
follow from the covariance conditions and the field
source identity are discussed in Sec. 2. 

On requiring the Jacobi identity to hold for the 
double commutators of the source lllv and the dynam
ical variables of the spin-2 field, strong restrictions 
are imposed on the operator nature of the singular 
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terms in the stress-tensor ETCR's. These are discussed 
in Sec. 3. In Sec. 4, we show that the restrictions 
following from the field-source identity and the Lorentz 
covariance conditions imply that the source gJflV of 
the spin-2 field must be nonlinear in the coupling 
strength g. This is interesting because it shows the 
essentially nonlinear nature of a theory in which the 
source is related to the stress tensor. A familiar 
example of this is theory of the gravitational field. lo 

In Sec. 5 we verify that the source JflV of the spin-
2 field obeys certain requirements, which follow 
from the recent work ofOrzalesi, Sucher, and Woo,n 
and Divgi and WOO.12 In Sec. 6, we briefly summarize 
our conclusions. 

2. CONSTRAINTS IMPOSED BY COVARIANCE 
CONDITIONS AND FIELD-SOURCE IDENTITY 

The conditions imposed on a field theory by Lorentz 
covariance, as expressed by the ETCR's among the 
components of the stress tensor, are the foliowing7.B: 

i[0oo(x), 0 oo(Y)]xo=vo 

= [00k(x) + 0 0k(y)] 

X Okb(X - y) + woo.oo(x, y), (2.1) 

i[000(x), 0 0k(y)]xo=vo 

= [0 k lx) + 0 00(Y}I7kz] 

x olb(x - y) + woo.ok(x, y), (2.2) 

i[0oo(x), 0 kZ(y)]xo=uo 

= [-000kZ(x) + 0 0k(Y)01 + 0 0/(y)Ok] 

X b(x - y) + WOO.kl(X, y), (2.3) 

i[00ix), 0 0z(y)]xo=vo 

= [00Z(X)Ok + 0 0k(y)oz] 

x b(x - y) + WOlc.OI(X, y), (2.4) 

i[00k(x), 0 mn(y)l"o=!/o 

= [0 mn(X)'I)kz - 0 mlx)'I)nk - 0 nl(y)'I)mk] 

X OIO(X - y) + wok.mn(x, y). (2.5) 

Here, the operators woo. oo , etc., are subject to the 
following constraints, as a result of the commutation 
relations (CR's) among the generators of the Poincare 
group: 

(a) J d3xw ... (x, y) = ° (2.6) 

for the singular term W •.• occurring in each of the 
equations (2.1)-(2.5), 

(b) 

(e) 
(WOO. oo) = ° = (WOO,l,I) = (WOk.O/)' 

woo.oo(x, y) = -woo.oo(y, x), 

WOk.Om(x, y) = -wom.oiy, x), 

(2.7) 

(2.8) 

(d) J d3XXkWOO.OO(x, y) = 0, 

J d3xXkWOo.om(x, y) = 0, 

J d3xxkwoo.mn(x, y) = 0, (2.9) 

J d3x[XkWOl.Om(x, y) - xzwok.om(X, y)] = 0, 

Jd3X[XkWOLmn(X, y) - xzWOk,mn(x, y)] = 0. 

Consider a theory with only one neutral tensor 
meson, with the quantum numbers of the vacuum. 
The field-source identity 

m2 

0 fl vCX) = - [UflV(x) - 'l)uvu(x)], g , (2.10) 

together with the ETCR's (2.1)-(2.5) and the canon
ical commutation relations for the spin-2 field, impose 
constraints on the structure of the interaction. 

To obtain these, we first write down the equations 
describing a spin-2 field interacting with a divergence
less source ]flV(X): 

opIJPllv - !(oflnV + O)Ifl) - !'I),lvo;.Cfi;. - n;) 

= !m2(UflV - rJflvU) - !gJl'v, (2.11) 

(ll" I' -~o I'll v)' + (TI" v _ Jcb V11V) _ IlvTI 
;, -;, ;, 2;' rJ;, 

= O;,WflV -~6l(oaWva) -~6/(OaWfla), (2.12) 

Ofl],n' = 0. 

These lead to the following equations: 

OII(U ,tV - rJ/lVu) = 0, 

-g. . J" u =-2J, J == a' 
3m 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

In the above rJ/lV denotes the Minkowski metric, 
(1, -1, -1, -1), and u == Ua

a • 

Choosing the dynamical variables to be 

Ukl
T 

= UkZ - i1'/kIU mm' 

and the momentum 'Trkl conjugate to u,I, 
(2.18) 

'Trkl = -2I1°;; + 2(v' 2 
- -tm2r\oi)1 - ~m2rJkZ)nOmm' 

(2.19) 
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we may express the other components of U
IlV 

as 
follows: 

Umm = (I\72 - m2rl[(ooUT) - gJoo] , (2.20) 

1 2 
UkO = - 2 (01T)k + -4, ok(oih) 

m 3m 

+ ~(JOk - ~ OkOmJom) , (2.21) 
m 3m 

Uoo = (iy 2 - m2rl[(ooUT) - gJoo] - --L j. 
3m 2 

(2.22) 

Here j denotes the trace J / , and we have used the 
notation 

(o1Th == OI1Tkl' (OO1T) == okot1Tkl' 

(ooU T) == OkOIU kl T. (2.23) 

We substitute the field-source identity in the 
relations (2.1)-(2.5) and re-express the results in terms 
of the dynamical variables. The relation (2.2), for 
instance, leads to the following relation: 

i[D-looUT(X), D-lJOO(y)] + i[D-1JOO(x), D-looUT(y)] 

- gi[D-lJOO(x), D-1 J oo(y)] 

= (1/m4)[l7k(x) + l7k(y)]oko(x - y) 

- (g/m4)[<h(x) + <h(Y)]Okb(x - y) 

- (g/m4)woo.oo(x, y). (2.24) 

Here D denotes the operator 

D = (i\72 - m2), 

and we have introduced the notation 

(2.25) 

17k == (01Th - (2/3m2)ok(001T), (2.26) 

dk == J Ok - (2/3m2)okoIJOI' (2.27) 

When the source density J/tv(x) is nonsingular in the 
coupling strength g, then (2.24) implies the following 
relation: 

i[ooUT(x), Joo(O)(y)] + i[Joo(O)(x), ooUT(y)] 

= D(x)D(y){(1/m4)[l7k(x) + l7k(Y)]Okb(x - y) 

- (1/m4)woo.oo(x, y)}. (a) 

I;fere, (Ooo.oo(x, y) denotes the coefficient in possible 
terms in woo.oo(x, y) of order l/g: 

Woo .oo = (l/g)woo .oo + w~~~oo + O(g), (2.28) 

The relations obtained similarly from 
are the following: 

(2.29) 

(2.2)-(2.5) 

woo.o/(x, y) = -(2/3g2)V20kb(x - y), 

i[aaU T, 'J~O)] + i[J~~), 17k ] 

= D(x){Ukt(X)OIO(X - y) 

+ teD-laoU T(x)]akb(x - y) 

+ [D-laaU T(y)]akb(x - y) 

+ (l/m2)WOO,Ok(X, y)}, 

(bI) 

(b2) 

i[oaUT(x),f°)(y)] 

= (1/m2)D(x)({[l7ix) - l7k(y)]ok 

- (1/m2)Doa1T(x)}o(x - y) 

- {WOO,H(X, y) - woo.oo(x, y)}), (cl) 
i[J~~)(x), U mnT(y)] 

= (1/m2)D(x){1TmnCX) - (1/m2)[oml7n(x) 

+ onl7m(x) - i1Jmnozl7tCx) 

- l7m(y)an - l7n(y)om + ~-1Jmnl7Z<Y)oz 
+ (2/3m2)(omon - i1Jmn V2)OO1T(X)]} 

x o(x - y) - (l/m2)D(x)woo.mn T(X, y), (c2) 

i[iikO)(x), l7zCy)] + i[l7k(x), ii~O)(y)] 

= [l7lx)ok + l7k(y)OI]O(X - y) - wok.om(x, y), (d) 

WOk.mnS(X, y) 

= (m
2
/g

2
)[!(1JkmOn + 1JknOm - i1JmnOk)O(X - y) 

- (2/3m2)omOnOkb(X - y)], (el) 

i[iikO)(x), ooUT(y)] + i[l7k(x), Joo(Y)] 

- (l/3m2)[l7k(x), Dj(y)] 

= D(y)({ D-looUT(X)Ok 

- 2[Uk t(y) + i1JkID-lOOUT(y)]OI}O(X - y) 

+ (1/m2)OJO".Iz{X, y», (e2) 
and 

i[iikO)(x), U mn T(y)] 

= U mn T(x)OkO(X - y) 

- {1Jnk[U mt(y) + i1Jmt D-looUT(y)] 

+ 1Jm,,[UnI
T(y) + :l1JnzD-looUT(y)] 

- ff1Jmn[U"t(y) + i1J"zD-
l
ooUT(y)]} 

X ozb(x - y) + (1/m
2
)(OOk,mnT(X, y). (e3) 

The notation used in the above equations is as 
follows. WOO,Oks is the part of WOO .Ok which is the most 
singular in g, while (l/g)WOO,Ok is the part which be
haves as g-l. Similarly for wok •m: and (OOk.mn' Writing 
explicitly, we have 

wOO.Ok = (1/g2)[g2woo.o"S) + (l/g)woo,ok 

+ a part regular in g, etc. (2.30) 

In obtaining the relations following from (2.2) and 
(2.5), we have used the canonical commutation 
relations for the spin-2 field: 

i[Ukt(x), 1Tmn(y)l"o=YO = 0kl.mnTo(x - y), (2.31) 

where 

Okl,m; == t(1'Jkm1'Jln + 1'Jkn1'Jrm - i1Jkl1Jmn)· (2.32) 

The results (b 1) and (e 1) tell us that in the singular 
terms WOO.Ok and WOk .mn in the stress-tensor ETCR's 
(2.2) and (2.5), the parts most singular in g are c 
numbers. We note that the trace (in m, n) of this c
number part of W Ok.mn is equal to the corresponding 
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c-number part of WOO,Ok: 

Wok,mmS(x, y) = WOO,O/(x, y), (2.33) 

This is a consequence of (2.2) and (2.5) and the 
Lorentz transformation properties of (01 [(;ll'v(x), 
(;l.<a(Y)] 10). 

The relations (a), (b2), (el), (c2), (d), (e2), and (e3) 
express constraints on the structure of the g-inde
pendent parts of the source Jl'v' For instance, the 
relations (a), (el), and (c2) imply that Joo(x) andj(x) 
must depend on the canonical momentum variable 
7Tkl(X). These constraints are in addition to the 
restrictions imposed because JI'V has zero divergence; 
the latter have been discussed in Ref. 1. 

3. CONSTRAINTS IMPOSED BY THE 
JACOBI IDENTITY 

In the last section, we have obtained a number of 
constraints on the source density J IIV in the form of 
relations for the commutators of components of JI'V 

with the dynamical variables Um /' and 7Tmn ' Since the 
dynamical variables themselves satisfy the canonical 
commutation relations (CCR's), the Jacobi identity 
for double commutators will impose consistency con
ditions. We examine these in this section. 

There are three independent constraints arising from 
Jacobi identities applied to the commutator con
straints obtained in Sec, 3. First, consider the rela
tions (b2), (c2), and (e3), and the CCR's. The CCR's 
are given by (2.31) and the vanishing of [U",/ (x), 
Uk/'(Y)] and [7Tk(X), 7Tl(Y)] at equal times. 

From (e3), we may obtain an expression for the 
equal-time commutator (ETC) 

i[OlW'1',3 k<O)]. (3.1) 

Using this together with (b2) gives an expression for 
the ETC 

i[J~~), 7Tk]' (3.2) 

The relation (c2) gives an expression for the ETC 

i[J~~), U mn'1'] , 

while the CCR gives the ETC 

which is a c number. 

(3.3) 

(3.4) 

The Jacobi identity for the triple commutators of 
the operators 7Tk , U mr?', and J oo then leads to the 
following relation: 

[UmnT(z), {D(x)WOO,Ok(X, y) + OIOjWOk,I/(Y' x)}] 

+ [ii\(y), D(x)woo,mnT(z, x)] = O. (f) 

This gives a constraint on the operator character 
of the singular terms WOO,Ok' WOk, It, and Woo,mn'1' (Z, x) 
occurring in the stress-tensor ETCR. Thus (f) is 
consistent with the two functions 

(3,5) 

and 
(3.6) 

both being c numbers. In a model in which this is 
true, we would have the additional restriction that 

(3.7) 

since the vacuum expectation value (VEV) of wOO,mn 

must vanish, which follows from (2.3). We stress that 
(f) does not necessarily require (3.5) and (3.6) to be 
c numbers; however, the latter may be true in a 
particular model. 

In a manner similar to the above, we may start 
with the relations (b2), (el), and (e2), and the CCR; 
the Jacobi identity for the operators 

j(y), 7TnCX) , and ooU'1'(z) (3.8) 

then leads to the constraint 

[7Tk(X), D(z)D(y){ (}JOO,ll(Z, y) - woo,oo(z, y)}] 

- 3m 2[00U'1'(z), D(y) 

X {(jjok,mm(Y, x) + c/>OO,Ok(Y' x)}] = o. (g) 

Again, the constraint (g) would be consistent with 
the quantities 

{6>oo,ll(z, x) - woo,oo(z, x)} (3.9) 
and 

(3.10) 

being c numbers. In a model in which this is true, 
(3.9) would further imply that 

c/>OO,ll(Z, x) = O'Joo,oo(z, x). (3.11) 

Note that each term in (3.11) must be a q number or 
zero, since it has a vanishing VEV. 

Finally, we consider the relations (d) and (e3) and 
the CCR. Using these and the Jacobi identity for the 
operators 

am, 7Tn, and Ukl'1', (3.12) 

we obtain the following constraint: 

i[U mn '1'(y) , wok,olx, y)] + (i/m2)[7T1(z), wok ,mn'1'(x, y)] 

+ (i/m2
)[7Tk(X), {u01,mt(z, y)] 

= -F1mn(y)t5(x - y)Okt5(X - z) 

- FkmnCy)t5(z - y)Olt5(X - z) 

+ 'fJkrFlmn(Z)t5(z - x)ort5(x - y) 

+ 'fJlrFkmn(X)t5(x - z)ort5(z - y) 

- (1]nk Flm,.(Z) + 1]mkFlnr(z) - ~1]mJlkr(Z) 

- ~ Omn,kr'1' 1.- V~) o(z - y)oro(x - y) 
9m OZI 

- ('fJnlFkmr(X) + 'fJmlFknr(x) - i'fJmnFkllx) 

- ~ omn,7' '1' ~ V'!) o(x - y)oro(z - y). (h) 
9m oXk 
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Here we have used the notation 

F (x)-b T~_~~ tmn - n.mn::l 3 2::l 
uX; m uX, 

X (_0_2 - _ 11Jmnv;). (3.13) 
oXmoxn 

In contrast to the constraints (f) and (g), the 
constraint (h) requires that at least one of the singular 
terms WOk.Ot and WOk.mnT must have a q-number part. 

We note that a simple set of assumptions about the 
operator character of the singular terms in the stress
tensor ETCR's that would be consistent with the 
constraints (f), (g), and (h) (which in turn follow from 
the covariance conditions and the field-source identity) 
are that Woo. Ok and wok.mn'l' are c numbers, woo.m/ = 
0, while (jjoo.lt = woo.oo are q numbers (or zero) and 
';)Ok.Ot is a nonvanishing q number. 

These are statements only about the parts of the 
singular terms that are proportional to l/g. The terms 
proportional to 1jg2 in WOO.Ok and WOk.mn are given by 
(b1) and (el), while WOO.mn and 6)Ok.Ot have no terms 
proportional to 1jg2. Therefore, the simple assump
tions above, if true for WOO.Ok , etc., are also true for 
the parts of WOO.Ok , WOk.mn , etc., that are singular in g. 
The considerations of this paper do not give any con
straints on the parts that are regular in g (apart from 
the constraints on the VEV's of WOO.Ok , Woo. mn' etc., 
that follow directly from the stress-tensor ETCR's). 

4. NONLINEARITY OF THE SOURCE IN THE 
COUPLING STRENGTH 

We now examine the additional relations that would 
follow from the stress-tensor ETCR's (2.1)-(2.5) and 
the field-source identity if the source term gJllv were 
linear in the coupling constant g, that is, if JIlV (0) (x) = 

JIlV(x). 
For instance, consider the relation (2.24) following 

from (2.1) and the field-source identity. WhenJllv(x) = 
J

IlV 
(O)(x), then the terms of order g in (2.24) lead to the 

relation 

i[D-1JOO(x), D-1JOO(y)] 

= (ljm4)['Jix) + 'Jk(Y)]Okb(X - y) 

+ (lJm4)woo.00(O)(x, y), (4.1) 

where woo.oo(O) is the part of WOO.OO that is independent 
of g. 

Similarly, we obtain from (2.1)-(2.5) and the field
source identity the following relations [if we assume 
JIlV(x) = JIlV(O) (x)]: 

i[D-lJOO , 'Jk] 

= [lD-1JOO(x) + D-1JOO(Y)]Okb(X - y) 

- (1jm2)woo Ok(O)(X, y), (4.2) 

i[D-1JOo,j] 

= (l/m
2
){['Jk(X) - '(riy)]ok + looj(x) 

+ m-2DotJo/(x)}b(x - y) 

- (l/m2)[woo.u(0)(x, y) - woo,oo(O)(x, y)], 

(4.3) 
0= (['Jm(y)on + 'In(y)om - i1Jmn'JiY)Ok] 

- [omJon(x) + onJom(x) - i1JmnokJok(X)] 

+ (2J3m2)(omon - 11Jmny2)oIJO/{x)}b(x - y) 
IO)T( ) + wOO,mn x,y , (4.4) 

i['Jk(x), 'Jz{r)] 

= -[az(x)o" + dk(Y)OI]b(x - y) - WOk,o/O)(x, y), 

( 4,5) 
-i['(h, D-1JOO ] + (ijm2)(dk,j] 

= -[D-1JOO(x) - (ljm2)j(x)]oko(x - y) 

+ 2[D--1J OO(Y) - (ljm2)j(Y)]OkO(X - y) 

+ (ljm 2)wol.;,u(O)(x, y), 

0= iOmn,ktrD-1Joo(Y) - (ljm2)j(Y)]0IO(X - y) 

(4.6) 

+ (ljm2)wok ,mn(O)T(x, y). (4.7) 

In the above equations, woo,mn(O)T is the traceless 
part of WOO,mn(O) (with respect to the indices m and n), 
and woo,mn(O) is the g-independent part of wOO,mn' etc. 

The relations (4.4) and (4.7) directly give strong 
constraints on the singular terms woo.mn(O)T and 
(j)ok,mn(O)T. The Jacobi identities for triple commu
tators, e.g., those involving 'Jk , J, and Joo , give further 
restrictions on the singular terms. 

Consider (4.7). This directly gives the g-independ
ent, traceless (in m, n) part of the singular term 
W Ok .mn in the stress-tensor ETCR (2.5). It is seen that 
this expression is consistent with the general require

ments on wOk,mn' 
Next we consider (4.4). The properties (2.6) and 

(2.9) required of WOO.mn(x, y) require that 

and 
Jd3 (O)T() - 0 xWOO.mn x, Y - (4.8) 

(4.8) and (4.9) require that 

[omJo,,(x) + onJom(x) - i1Jmno"Joix)] 

- (2j3m2)(omon - t1JmnV2)O,JozCx) = 0, (4.10) 

while (4.9) and (4.7) require the following: 

- [l1knd-m(Y) + 1Jkmdn(V) - i1Jmn'J,lY)] 

+ Yk{[OmJon(y) + onJOm(Y) - i1JmnolJo/Y)] 

- (2J3m2)(omon -11JmnV2)0,Jo(Y)} = O. (4.11) 
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(4.11) implies that 

(\-m(O) = O. (4.12) 

As the origin of y can be chosen arbitrarily, this 
implies 

for U/lV ' we obtain the following: 

(0
2 + m2)0/lv = m2(J/lV - 3~2(O/lOV - 02f)/lv)j). 

(5.7) 
(4.13) which leads to 

Recalling (2.27), we see that (4.10) and (4.13) would 
require that 

( 4.14) 

This shows that the assumption that J/l'(x) is 
independent of g implies that J/l'(x) = 0 in a Lorentz
covariant theory with a field-source identity. There
fore, such a theory with a nonzero interaction requires 
that the source term gJ/l'(x) be nonlinear in g. 

5. VERIFICATION OF SOME PROPERTIES OF 
THE SOURCE J/l' 

Recently, results have been obtained by Orzalesi, 
Sucher, and WOO,ll and by Divgi and Woo,12 which 
state that if S/l'(x) is a symmetric, local second-rank 
tensor operator with zero divergence, obeying certain 
additional conditions,14 then the space integrals of 
SIlO and (x/lS,o - x,S/lo) will be proportional to the 
generators P/l and M/lv of the Poincare group: 

f d3xS/lO(x) = CP/l' (5.1) 

f d3x(x/lS,o - x.S"o) = CMw (5.2) 

The source tensor J"v(x) of the spin-2 field Ul'v(x) 
has the properties required of the operator SI'V(x) , 
as noted in Ref. 1. We have pointed out there that this 
may be used for fixing the normalization of J/lv(x), 
by requiring that 

f d3
xJ/lO(x) = Po· (5.3) 

The results of Refs. 11 and 12 then imply that we 
should be able to write J/lo(x) in the form 

(0 2 + m2)0(x) = (02 + m2)j(x), 

where 0 denotes the trace 0:. This implies 

j(X) = 0(x) + X(x), 

where X'(x) obeys the equation 

(02 + m2)x(x) = O. 

We therefore obtain from (5.7) the equation 

where 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

B/l V = (02/m2)0/lv + (1/3m2)(o,..ov - 0 2'7/1.)(0 + X). 

(5.12) 

We must now check whether B/lo has the properties 
(5:5) and (5.6). We first write 

f d3
xBiO(x) = !~2 J d

3
x0iO(x) - ~2 J d3

xV20 iO(x) 

+ ~ OOfd3XO;[0(x) + x(x)]. (5.13) 
3m 

The first term is of the form (1/m2)o~Pi and vanishes 
(by momentum conservation). The remaining terms 
vanish by Gauss's theorem if we assume the vanishing 
of the surface integrals at infinity. We thus obtain 

f d3xBiO(x) = o. (5.14) 

Similarly. we write 

J d3XBOO(X) = (o~/m2)po - (l/m2) f d3xV2 

x {0oo(x) - ![0(x) + x(x)]} = O. (5.15) 

J/lO(X) = 0/lo(x) + B/lo(x), 

such that BJ'o(x) obeys the conditions 

Therefore, the requirement (5.5) is satisfied. We next 
(5.4) write 

f d3x[x/lBvo(x) - xvB/lo(x)] = O. (5.6) 

We shall now check that the properties of the 
source J IlV are consistent with this requirement. 
U sing the field-source identity (2.10) in Eq. (2.17) 

f d3x(x;Bjo - xjB;o) 

= a~f d3x(x;0 jo - x j 0/o) 

+ f d3x(x;V2 0 jo - x jV 2 0 iO) 

+ toofd3X(X;O; - xA)(0 + X) 

= a~Mij = 0, (5.16) 
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where we have integrated by parts, set surface terms 
equal to zero, and have used angular momentum 
conservation. 

We finally write 

J d3x(XiBOO - XOBiO) 

= o~Mio - J d3xx,V20 oo + Xo J d3
xV20 iO 

+ t J d3
xXiV2(0 + X) - tXoOo J d3xo;(0 + X) 

= o~Mio = -[Po, [Po, Mio]] = i[Po, Pi] = O. 

(5.17) 

This shows that 'po can be written in the form (5.4), 
with Bpo satisfying the conditions (5.5) and (5.6), so 
that our model satisfies the requirements of Refs. 
11 and 12. 

In concluding, we note that there are several tensors 
in a spin-2 theory such that their space integrals may 
be used for constructing the generators of the Poincare 
group. For instance, from the equation 

g'pv = (0 2 + m2)(Upv - 'fJpvu) + ('fJIlv
02 - 0llOV)U 

and the requirement that the space integrals of 'po 

and (xp'vo - xv'po) should be proportional to the 
generators of the Poincare group, it follows that one 
may also use the tensor 

(5.18) 

instead of JIlV to construct the generators PIl and M llv ' 
Our hypothesis that (UIlV - 171lvU) is proportional to 
the stress tensor is consistent with this, as this hypoth
esis implies that the space integrals of (5.18) will 
also be proportional to PI' and Ml'v' A more general 
form ofthe field-source identity would be the following: 

0 pv = (a + b02)(Ul'v - 'fJIlvU) + C('fJI' V02 - 0l'0v)u. 

(5.19) 

We have postulated the identity in the form (2.10) 
because of its simplicity and because it involves no 
arbitrary parameters. 

6. CONCLUDING REMARKS 

In this paper, we have obtained the constraints 
imposed by a field-source identity and Lorentz 

covariance on a spin-2 meson theory. The results 
obtained here indicate the nature of the restrictions 
on a theory in which the spin-2 field and its source 
are closely related to the stress tensor. Although we 
have not exhibited a model theory satisfying all the 
field-dependence requirements, the latter are given 
explicitly and do not appear to lead to any incon
sistency, which lends support to the existence of such 
field theories. 

As discussed in Ref. 1, the field-source identity may 
be extended in a straightforward way to take into 
account the two neutral spin-2 mesons f and 1'. 
The constraints imposed on such theories by Lorentz 
covariance are a straightforward extension of the 
results obtained here. 
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The role of singular forward multipartic1e scattering amplitudes in S-matrix formulas for the higher 
virial coefficients is studied in detail. It is shown that by means of a simple limiting process one can give a 
precise, unambiguous meaning to the traces over on-shell scattering amplitudes which appear in our 
previous formulas for the virial coefficients. The general arguments, in which we maintain a reasonable 
level of rigor, are supported by explicit calculations for the third and fourth virial coefficients. Also, the 
angular momentum expansion used in earlier work is shown to converge. 

1. INTRODUCTION 

It is intuitively clear that the thermodynamic 
properties of a dilute interacting gas can be understood 
in terms of the collisions involving a small number of 
particles.1.2 The concept of the scattering matrix, 
which gives a complete description of the collision 
process, therefore enters into statistical mechanics. 

By way of the virial expansion, the role of the S 
matrix in statistical mechanics was examined in a 
previous paper,3 hereafter referred to as I. A simple 
prescription for calculating the virial coefficients in 
terms of S-matrix elements was derived. 

This prescription, stripped of details, reads 

bn ~fdEe-P' 1m Tr S-1 a s, (1.1) 
OE 

and thus relates the n-particle S matrix at c.m. energy E 

to the coefficients bn from which the virial series can 
be obtained readily. A generalized form of (1.1) 
gives a basis for extrapolating toward a statistical 
mechanics of relativistic gases. The qualitative and 
physical aspects of (l.l) and some ,simple applications 
were discussed. 

It was also pointed out in 1 that an annoying 
problem remains in (1.1) even in its simplest non
relativistic form. The problem is as follows. One wants 
(1.1) to depend only on strictJy on-shell scattering 
amplitudes. In our original derivation Tr s-l(aSjO€) 
is supposed to be understood as limit as E --+ € + iO of 
Tr S-I(E)(aS(E)joE] where E is a complex off-shell 
energy whose on-shell value is E. One can easily see 
from the discussion in I that Tr S-l(asjO€) as defined 
this way will depend only on on-shell quantities 

provided that the scattering amplitude or T matrix 
does not become infinite anywhere on the energy shell. 
If the T matrix does blow up somewhere on the energy 
shell, a special discussion is required. These remarks 
are relevant for physics because, while the two-body 
T matrix is always finite in the physical scattering 
region, for three or more bodies the on-shell T matrix 
has poles in the physical region. A typical diagram 
with this property is shown in Fig. 1. The origin and 
nature of these singularities are discussed below, here 
we simply note that they indicate a possible difficulty 
in a program directed towards expressing all the bn in 
terms of on-shell amplitudes. In I we suggested a 
method for handling these singular pieces of multi
particle amplitudes and concluded that, in principle, 
everything was all right and bn could indeed be written 
in terms of on-shell amplitudes. This analysis was, 
however, not rigorous. In a later paper,4 hereafter 
called II, we studied ba in considerable detail and 
came to the same conclusion for this particular case. 
Unfortunately, the more rigorous methods of II were 
cumbersome and not easily generalizable to arbitrary 
n. The purpose of the present paper is to complete the 
program. We will show that in spite of the poles in the 
multiparticle amplitudes, all the bn can in fact be 
calculated from on-shell quantities. Also we give a 
recipe for computing bn which is, in principle, very 
simple and elegant. In practice, however, our present 
formulas will probably not be overly useful. This leads 
us to remark that although we have now shown that 
all the bn are determined by on-shell scattering data, 
there is still a lot of work to be done on the formalism. 
What we feel is needed is a hard study of the qualitative 
properties of scattering amplitudes involving several 
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P~ P~ 

FIG. I. A typical diagram for the scatter
ing amplitude which becomes sin,gular for 
forward scattering, where Pi = Pi and the 
intermediate state energy denominator 
vanishes, as a consequence of momentum 
conservation. 

particles, with the possible goal of finding a rearrange
ment of the virial series which would be more useful 
in practice (e.g., more rapidly convergen.t in certain 
cases). This more difficult problem WIll only be 
touched upon in the present paper. 

Let us now be more specific. 
First we have to understand where the above 

mentioned singularities come from and what they 
look like. Consider as an illustration the on-shell 
scattering amplitude for three particles of equal mass. 
Let the initial momenta be P~, P; , and p~ and the final 
momenta be PI' P2' and P3, where I Pi = I P; and 
Ip2 = Ip? since we are on shell. This amplitude 
blo~s up when p~ + p~ = p~2 + (p~ - PI - PZ)2. ~his 
singularity, which has the analytic form of a pole, IS a 
reflection of the fact that one way to make a three
particle event is to have two successive two-particle 
collisions 2' + 3' ->- 2" + 3, followed by 2" + l' ->-

2 + 1, with P~ = P: + PI - p~. (See .Fig. 21.) I~ a 
kinematic configuratIOn where the relatIOn PI + P2 = 
p~2 + (p~ _ Pl - P2)2 holds, energy can be conserved 
in each two-body event separately. When this happens 
the two collisions may occur arbitrarily far apart in 
time and the S-matrix as conventionally defined blows 
up. In particular, we note that in the forward direction 
where Pl = p~ and pz = p;, one is sitting right on top 
of the pole. Unfortunately (1.1) contains, among other 
things, integrals over forward scattering amplitudes. 
This does not, of course, imply a divergence in b3 • 

It simply means that one must carefully specify the 
on-shell interpretation of (1.1). 

We have discovered a simple modification of (1.2) 
that makes the on-shell nature of the S-matrix 
expressions for bn explicit. It is to write 

bn,-...J lim Jd€e-PE 1m Tr (S+(€) a S(€)ei8Ja
) , (1.2) 

8~O O€ 

where ei8J
• is a rotation around the third axis in the 

c.m. frame and € is now explicitly the on-shell energy. 
The rule is to do the trace and integration over € 
before taking the limit as e ->- O. Because of rotational 
invariance, which is assumed in the derivation of (I .2), 
the direction of the third axis is entirely arbitrary. 

The reason that S can immediately be placed on shell 
in (1.2) but not in (I.l) is that with the rotation ei8Ja 

inserted, the singular forward amplitudes are avoided. 
It should not be thought that (l.1) is wrong or fails 

to give an onshell formula for bn . If one is careful 
with the contour of the €-integration in (1.1), this 
formula gives results identical to (1.2). As stated 
above, the latter is explicitly on-shell. Notice that a 
forward amplitude in (1.1) will be replaced by a limit 
from a nonforward direction when one goes to (1.2). 
Thus, one might anticipate that, upon carefully doing 
the € integration over the forward amplitudes in (1.1), 
a new set of terms related to on-shell scattering 
arbitrarily close to, but not exactly in, the forward 
direction will arise. This is indeed the case. It is, 
however, not a simple task to recognize these terms. 
This is why the on-shell nature of (1.1) is not trans
parent. 

The method of treating (1.1) suggested in I and 
worked out in detail for b3 in II was to take the trace 
for each fixed angular momentum J and then to sum 
over J. For a given J, the T matrix is sufficiently 
regular on the energy shell so that none of the diff
iculties described above appear. One then has to 
verify that the sum over J converges and gives the 
right answer. For b3 this was done in II. The angular 
momentum method is very closely related to the e ->- 0 
limit in (1.2). The precise connection is explained in 
the text. 

In previous work on the connection between the 
bIt and the S matrix, it appears either that the 
existence of singular forward scattering amplitudes has 
been ignored or else that the treatment has been 
restricted to a fixed angular momentum J, ignoring 
questions about the convergence of the sum over J. 

We are aware that a reasonable amount of mathe
matical care and rigor is needed to firmly establish 
an equation like (1.2). For this reason we have taken 
time to give rigorous justification for those steps in 
the derivation of (Ll) which might appear to be 
particularly questionable. In an appendix we u~e path 
integral techniques to prove that b", can be WrItten as 
the limit of a trace where, as in (1.2), the final state is 
rotated relative to the initial state. Armed with this 
result, we can obtain (1.2) in exactly the same way 
that (l.l) was obtained earlier. The steps in the latter 
calculation are all well defined if one remembers to 
first establish the formula in a finite volume and then 
take an infinite volume limit. We are careful to show 
that the limit as e ->- 0 can be interchanged with a limit 
of infinite volume. As a byproduct we are able to 
prove that the angular momentum series of bn 

converges. While there is room for improvement, we 
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feel that the level of rigor maintained here should 
satisfy most readers. 

In addition to obtaining the general results described 
above, we illustrate the situation with several specific 
calculations for b3 and b4 • For b3 , we compute the 

contribution of all singular pieces of st(aSjClE). We do 
this both by using the explicitly on-shell small angle 
limit (1.2) and by carefully doing the E integration in 
(1.1). As expected, the two methods agree and also 
agree with the angular momentum sum worked out 
in II. The next coefficient b4 brings in some qualita
tively new effects. Again we calculate the contributions 
of singular amplitudes using both (1.1) and (1.2). 
Again both methods agree. We consider these explicit 
computations as strong evidence that our basic 
approach is indeed correct. 

Due to the already extreme length of this paper, we 
have chosen to omit any discussion of applications. 
We would, however, like to state the following fact 
without proof or supporting discussion. It is that the 
forward singularities in st(OSjOE) have the interesting 
property that they give the leading contribution to bn 

at low temperatures. As mentioned above, these 
singularities are the result of two or more successive, 
well separated collisions each involving fewer than n 
particles. Therefore, the pieces of bn which are largest 
for small temperatures depend only on the scatterings 
of fewer than n particles. In particular, the largest 
piece of bn comes from successive two-body collisions 
and can be expressed as a function of the two-body 
scattering lengths above. 5 This might turn out to have 
some useful consequences. 

The paper is organized as follows. In the next 
section we review some basic facts about the virial 
coefficients and state some results about the () ---+ 0 
limit. Our basic formulas and rl:sults are also stated 
there. Derivations given in I are, however, not 
repeated. Section 3 is basically a prelude to Secs. 
4 and 5, where the explicit computations for b3 and 
b4 are discussed. In the case of b4 , most of the detailed 
work is relegated to appendices. 

We will restrict ourselves to nonrelativistic particles 
of a single species. The extension to relativistic 
situations discussed in I is straightforward. For 
simplicity, we will also assume that there are no bound 
states, and we will take account of Fermi or Bose 
statistics only when it is important to do so. 

2. BACKGROUND AND SOME 
BASIC RESULTS 

This section is intended to provide a fairly rigorous 
foundation for our later discussions of the vi rial series 
from the point of view of scattering theory. We will 

really not be exclusively concerned with scattering 
theory here. Rather, we begin by reviewing some of 
what is known about the vi rial expansion in the more 
usual V-function formalism. We then state a few 
simple but basic results which are necessary to justify 
the 0 ---+ 0 limit described in the Introduction. The 
proofs are relegated to appendices. Then we review 
our previous results concerning the connection 
between bn and the S matrix and, finally, state our 
main result. 

A. Definitions 

We are interested in a nonrelativistic gas of volume 
V, temperature (J-1, chemical potential /J, and pressure 
P. The power series expansion for the grand potential 
12 = -PVis 

00 

12 = 120 - Vf3-I;.-3.2 bn(v)zn, (2.1) 
n=2 

A-1 = (mj27Tf3)~, (2.2) 

where Z = ePI', 120 = - V{J-1 A-3Z is the grand poten
tial for an ideal gas, and m is the mass of a gas 
molecule. In (2.1), the coefficients depend on V: We 
are only interested in 

bn == lim bn(V). (2.3) 
V-+oo 

With suitable restrictions on the interactions, this 
limit can be rigorously shown to exist.6 We consider 
only cases where (2.3) makes sense, and we will not 
concern ourselves further with questions having to do 
with interchanging the limit V ---+ 00 and the sum over 
n in (2.1). This latter point has been extensively 
discussed in the literature. 6 We pause only to say that 
the ability to interchange the sum and limit essentially 
defines the gas phase. 

Our object of study, then, is bn as defined by (2.1) 
and (2.3). We recall that bn depends on the dynamics 
of a finite number (n) of particles in an infinite volume. 
This is the basic reason why bn can be expressed in 
terms of on-shell scattering amplitudes. 

The usual expression for bn involves a function 

(Xl· .. xni V n iYl ... Y n) 

== connected part of {(Xl· .. Xni e-PIln iY1 ... Y n)}, 

(2.4) 

where Hn is the n-body Hamiltonian and "connected 
part of" means to subtract out products of the V m for 
m < n in the usual way. The algorithm for construct
ing V n is well known so we need not go into the details, 
except to remark that in perturbation theory language 
Un is simply the sum of all connected diagrams. 
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It is convenient to factor the c.m. dependence out of 
Un' We define 

(Xl' •• xnl Un IYI ..• Yn) 
= n!;'-Sexp [-(2nm/fJ)(X _ y)2] 

X ({x}1 Un I{y} )c.m., (2.5) 

where nX = 1 Xi' nY = 1 Yi and the matrix element 
with the "c.m." subscript is independent of X and Y. 
The labels {x} and {y} on the states are supposed to 
stand for any pairs of 3n - 3 coordinates specifying 
the relative distances between particles in the c.m. 
frame. It is easiest to think of {x} as the full set of 
coordinates Xi ..• Xn subject to the constraint 1 Xi = 
0, which obviously leaves 3n - 3 variables. The object 
bn is then given by 

bn = (n!/n!) J d,uz ({x}1 Un I{x})c.m., (2.6) 

where d",., is a 3n - 3 dimensional integration in the 
3n dimensional space of the x's. Because the integrand 
in (2.6) is translaticnally invariant, one has a certain 
amount of freedom in defining this integration. For 
our purposes it is convenient to set 

d",., = bS(Xl + X2 + ... + xn)d3xld3x2 ... d3xn · 

(2.7) 

The integration runs between + 00 and - 00 for all 
the x's. 

We will also need the expression for bn in terms of 
momentum space variables. We define 

(pI Un Iq)c.m. 

== f d",x d"'!le-i(~Pi'ki-~qi'Yi) ({x} I Un I {Y})c.m., (2.8) 

where P and q stand for the variables PI ... Pn and 
ql ... qn' subject to the c.m. constraints 1 Pi = ° and 
~ qi = 0. In many future formulas this c.m. constraint 
will be implicit. It is important to keep this in mind. 
Clearly, one can write 

bn = (n! In!) f dp (pi Un !P>C.m. ' (2.9) 

where 

dp = (27T)3~3(Pl + P2 + ... + Pn) 

( 
dapl d3p2 d3Pn ) 

X (27T)3 (27T)3 ... (27T)3' (2.10) 

Equations (2.6) and (2.9) are neatly summarized by 

bn = (n! In!) Tr (U n)c.m. ' (2.11) 

where the meaning of the trace over c.m. variables 
should be obvious. 

B. The Small Angle and Infinite 
Volume Limits 

We define 

Fn(O) = Tr (U nei8J3)c.m. 

= f({x}' Un I{R8x})c.m. d",., 

= f(p, Un IR8P)c.m. dp, (2.12) 

where ei8J 3 is a rotation about the third axis in the 
center of mass system and {R8X} and R8P are the 
correspondingly rotated coordinates and momenta. 
In all cases of physical interest, Un is rotationally 
invariant so that ei8J 3 can be replaced by a similar 
rotation about any axis without changing Fn(O). 

In Appendix A, it is shown that for potentials 
which fall off rapidly at large separations between 
particles, Fn(O) is continuous at 0 = 0, i.e., 

bn = (n!jn!)Fn(O) = lim (nfln!)FnCO). (2.13) 
8 .... 0 

Specifically, we prove (2.13) for potentials of strictly 
finite range or which fall off exponentially with 
interparticle distance. Actually, (2.13) probably holds 
for all potentials of interest to us, i.e., those potentials 
which are well enough behaved to construct a scatter
ing theory of the usual kind. This will become clear 
when the reader sees how we use this result. 

Equation (2.13) is not too surprising. From a phys
icist's point of view, the only possible worry might be 
that Fn(O) is defined as a trace over a system which is 
allowed to occupy an infinite volume. If the volume 
were finite, (2.13) would be essentially trivial. For this 
and other reasons to become apparent later, it is 
useful to record a result about the infinite volume limit. 

Consider an artificial system confined to a sphere in 
the center of mass system defined by 1i x: < A 2 

(remember ~i Xi = 0). The boundary condition is to 
be that the wavefunction vanishes at ~ x: = A2. Let 
Un(A) be the new U function and define 

:F n(O, A) = Tr [U n(A)ei8J3]c.m. 

= r ({x}1 UnCA) I {R8X}) d",.,. (2.14) 
J~"'1'<A2 

For potentials of the type described above, it is shown 
in Appendix B that 

lim:F n(O, A) = F n(O) 
A"" 00 

and 

lim:F n(O, A) = F nCO), (2.15) 
A-+oo 
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or 

bn = lim (lim (n!/n !).r n«()' A») 
9-+0 A-+ro 

= lim (lim (nt/n!).rn «(), A»). 
A-t'oo 8--+0 

This result is useful because it is sometimes convenient 
to manipulate expressions for Fn with a finite A, 
taking the limit as A ---+ w at the end of the calculation. 
According to (2.15), we can always freely interchange 
the limits () ---+ 0 and A ---+ w. 

C. The Angular Momentum Series for bn 

As mentioned in the Introduction, it is often useful 
to compute bn in an angular momentum basis. That is, 
one writes 

bn =2bJn (2.16) 
J 

where bJn is that part of bn which comes from states 
whose c.m. angular momentum is 1. We now turn to 
the properties of the b J n and the series (2.16). Among 
other things, we can use (2.13) to prove that (2.16) 
converges, a result which makes our previous work 
on b3 (see II) completely rigorous. 

Suppose we want to break the trace of a rotationally 
symmetrical operator A up into pieces coming from 
states of fixed 1. This may be done by means of the 
projection operator 

PJ = (81T2rl(21 + 1) 2 JdR'J)~M(R)U(R), (2.17) 
"'If 

where U(R) is the Hilbert space transformation corre
sponding to a rotation R, 'J)~ M(R) are the usual 
rotation matrices for spin 1, and the integration is over 
the rotation group. By definition, one has 

Tr A = 2 TrJ A, 
J 

TrJ A = Tr AP.T' (2.18) 

If A is rotationally invariant so that U(R)AU-l(R) = 

A, the above formulas can be considerably simplified. 
Consider 

TrJ A = (8 1T2r\21 + 1) J dR ~ 'J)~:(R) Tr [AU(R)] 

(2.19) 

for rotationally symmetric A. We can parametrize the 
rotations R by a unit vector e and an angle (), corre
sponding to a rotation through an angle 0 around the e 
axis. Now 2m 'J)~:'(R) and Tr [AU(R)] are themselves 
rotationally symmetric and can therefore depend only 
on (), not on e. Hence we can do the e integration in 
(2.19) trivially leaving only a one-dimensional integra
tion over e. All we have to do is compute the volume 
element dR in terms of e and 0, and then compute 

2m 'J)~m as a function of (). The calculation is standard 
and the answer is 

TrJ A = (21T)-1(21 + 1) 

where 

x L'"d()(1 - cos ()XJ(O) Tr (Aei8J3
), (2.20) 

J 

XJ«() = 2 eiom. 
m=-J 

(2.21) 

Obviously, we could have replaced ei8J 3 in (2.20) by a 
rotation around any axis, since Tr (Aeige

•
J ) is inde

pendent of e for e2 = I and A rotationally symmetric. 
Let us now apply (2.20) to the virial coefficients. 

From (2.1 0) and (2.12) we have 

bJn = (n t /21Tn!)(21 + 1) f/()(l - cos e)XA()Fn(e). 

(2.22) 
The completeness relation 

(21T)-12 (21 + 1)(1 - cos ()X.rC() = b«(), (2.23) 
J 

plus the fact proven above that Fn«() is continuous at 
e = 0, proves the convergence of (2.16), according 
to the usual theorems on orthogonal series. Note also 
that, according to (2.15), the sum over 1 can be inter
changed with the limit of infinite volume (A ---+ w). 

Having shown that 2J bJn converges in the 
mathematical sense, it is still desirable to have some 
idea about rate at which (2.17) converges. One 
expects to be able to neglect the b.Tn in (2.16) for 1» J, 
where J is a typical angular momentum in the states 
I {x })C.ill. in (2.6). Let ft be a typical momentum and d 
be a typical distance between particles, then 

J "-'nftd. (2.24) 

To estimate d, we have to consider two effects. The 
first is the range of the interaction, call it a. If two 
particles are separated by a distance less than a, they 
will certainly contribute to bn • The other effect is that 
particle I, for example, can interact with particle 2 
and then propagate freely over to particle 3 where it 
interacts again. The relevant distance here is the 
distance over which particle two can propagate. From 
the well known imaginary-time analogy, we know that 
its distance can be estimated from the single particle 
diffusion equation 

O!p 1 2 
-= - -V'!p. 
o{1 2m 

Over a time {1, a particle can diffuse a distance 
(m/p)! ,....., A, the thermal wavelength. Hence the second 
length is A and combining the two effects, we get 

d ,....., a + A. (2.25) 
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Of course, p is of order )'-1, which finally gives 

J ,...."" n(a/), + 1). (2.26) 

Note that J increases with n. Also J does not tend to 
zero as ), -+ 00, i.e., at zero temperature. This, as will 
be seen later, is a consequence of the singular ampli
tudes in the on-shell scattering formulas. For 11 = 2, 
the second effect mentioned above does not exist, 
hence 

(2.27) 

as one would expect from the Beth-Uhlenbeck expres
sion for b2 in terms of two-body phase shifts. Note that 
intuition obtained from looking only at the two-body 
case is misleading here. 

D. Off-SheJl S-Matrix Formulas 

In I it was shown that 

Tr(U,,)c.m. 

= _1 fe-PETr (AS;I(E) a Sn(E»). dE, (2.28) 
41Ti oE c,c.m. 

where A is a symmetrization or antisymmetrization 
operator explained in I, and the off-shell S matrix is 
defined by 

See) = 1 + [(E + i'rj - H o)-1 

- (E - i'rj - Ho)]T(E), 

S-I(E) = 1 - [(E + i'rj - HO)-1 

- (E - i'rj - Ho)-lJTt(E), 
T(E) = V + VeE + i'Y) - H) V, 

Tt(E) = V + VeE - ir; - H)V. 

Ho is a free particle Hamiltonian 

V= H- Ho. 

(2.29) 

The object 'Y) is a positive infinitesimal which serves to 
define the integration contour in (2.28). (We use E 
rather than € for the energy to remind ourselves that 
we are off-shell. This convention will not be followed 
in later sections.) The subscript "c.m." means the 
S matrix with the center of mass motion factored out. 
Specifically, the H in (2.29) is the total Hamiltonian 
minus the kinetic energy of the c.m. Thus, 

( AS-l as) 
oE c.m. 

contains no overall momentum conservation delta 
functions. The subscript "c" means to take the 
connected part. The algorithm for obtaining 

(AS~l(E) !eSn(E)} 

from s;l{aS,,(E)/BE] itself is identical to the algo
rithm for obtaining Un from the W functions. For 
example, for n = 3 and Maxwell-Boltzmann statistics 
such that A = 1, one has 

(SaIl Sa) = sa1 1..- Sa - S;I(1, 2) a S2(1, 2) 
BE c oE BE 

- S21(1, 3) a Sl1, 3) 
BE 

- S;I(2, 3) a S2(2, 3), 
BE 

(2.30) 

where S2(i,j) is the two-particle S matrix for particles 
i and j, it is obtained by setting V = V2(i,j) in (2.29). 
In general, Un is obtained from Wn (Wn ,......, e-fJHn) by 
subtracting off terms of the form e-PH', where H' is 
equal to H n minus the interaction terms connecting 
two or more clusters of particles, and then adding in 
certain exchange terms. Correspondingly 

( AS-1 aSn) 
n BE c 

is obtained from s~ltaS,,/BE) by subtracting off terms 

of the form s'taS'/oE where S' is defined by 
(2.29), with H = H', and then adding exchange terms. 
In perturbation theory language [As:;l(as,,/oE)]c is 
just the sum of all connected diagrams contributing to 
AS:;I(as,,/oE). It is easiest to think of[AS;I(aSn/aE)]c 
in this perturbation theoretic sense, but its definition 
is in no way dependent on perturbation theory. 

The derivation of (2.28) given in I involved the 
cyclicinvariance property [Tr (ABC) = Tr (CAB)] of 
the trace. To do things properly, one should use a 
finite volume so that all traces are convergent and well 
defined. The limit of infinite volume is then taken after 
(2.28) has been established for a finite volume. We 
are implicitly assuming, then, that 

( AS-1 as) 
" aE n c 

has a sensible limit as the volume tends to infinity. 
This is certainly true to any finite order in perturbation 
theory and with a little thinking the reader will easily 
see, in fact, that this must be the case if scattering 
theory is to make any sense at all. For n = 3, the 
proofs that the Fadeev equations have reasonable 
solutions provide a rigorous justification. No doubt, 
similar rigorous results could be obtained for n > 3. 
We are, of course, assuming that the potentials fall of 
fast enough at large separations between particles so 
that the S matrix as usually defined exists. Thus, 
Coulomb interactions for example are not allowed in 
the present discussion. 
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FIG. 2. A lowest-order singular dia
gram. The dashed lines denote two-body 
potentials. 

Since 

(E + i'YJ - Ho)-l - (E - i'YJ - HO)-l 

~ -27TiO(E - Ho) 

for infinitesimal 'YJ, it appears that (2.28) depends only 
on on-shell matrix elements of T. Upon closer 
inspection this is not so obvious. If the relevant matrix 
elements of T(E) are themselves singular as E ap
proaches the energy shell, one cannot simply interpret 
(E + i'YJ - Ho)-l - (E - i'YJ - HO)-l as a delta func
tion, but must carefully investigate the manner in 
which the contour in (2.28) winds its way around the 
singularities of the integrand. The T-matrix elements 
are singular, but nevertheless (2.28) does depend only 
on on-shell scattering quantities. This is the main point 
of the present paper. We remind the reader that 
singular T-matrix elements are in no wayan indication 
of infinities in bn . The only difficulty one encounters 
is that these singularities in T make it harder to show 
that bn can be obtained from strictly on-shell quantities. 
The small angle limit is designed to accomplish the 
latter. 

Before giving explicit on-shell formulas, it is well 
to look at a simple example of a singularity in T such 
as that pictured in Fig. 2. Let 11 = 3, and suppose that 
particles 1 and 2 interact with a potential V12 ' particles 
2 and 3 interact through V23 ' and that there is no 
direct interaction between 1 and 3. Exchange will be 
ignored, so A is set equal to 1. Keeping only terms of 
order V12 ' V23 , and Vl2 V23 , the three-body T matrix is 

TaCE) = V12 + V23 + V12 (E + i'YJ - Ho) V23 

+ V23 (E + i'YJ - Ho) V12 

+ O«V12)2, (V23)2). (2.31) 

To compute 

we need the two-body T matrices which to this order 
are 

T2(1,2) = VI2 + O[(V12)2], 

T2(2, 3) = V23 + O[(V23)2], 

T2(l, 3) = O. 

(2.32) 

Using (2.30), one readily verifies that 

(S-;l(E) v~ S3(E»)c 

= ! ~ {[(E + i'YJ - HO)-l - (E - i'YJ - HO)-l] 
2 vE 

x (V12[(E + i'YJ - Horl + (E - i'YJ - HO)-1]V23 

+ V23 [(E + i'YJ - HO)-l + (E - i'YJ - HO)-l]V12)} 

+ O«VI2)2, (V23)2), (2.33) 

and that 
H 

(pi (S3'I(E) (7~ saCE»)c IP)c.m 

- - (7 
= VI2(0) Vzg{O) -

oE 

x {[E + i'YJ - E(p)tl - [E - i'YJ - E(p)tl} 

X {[E + i'YJ - E(p)tl + [E - i'YJ - E(p)tl}, 

(2.34) 

where E(p) = 2.p;;2m, and the V's are the Fourier 
transforms of the V's. Note that, according to our 
c.m. convention, there is no overall momentum 
conservation delta function. Furthermore, by defini
tion 

J e-
PE 

Tr (S3'I(E) o~ S3(E) to.m.dE 

= (3 VI2(0) V23(0) J dEe-PE J dp 

X {[E + i'YJ - E(p)tl - [E - i'YJ - E(p)rl} 

X {[E + i'YJ - E(p)tl + [E - i'YJ - E(p)tl} 

+ O«VI2 )2, (V13)2), (2.35) 

where dp is defined by (2.10). It is clear that in (2.35) 
we cannot set 

(E + i'YJ - E)-l - (E - i'YJ - E)-l = -27Tio(E - E) 

without getting into trouble. Rather one must set 

[(E + i'YJ - E)-l - (E - i'YJ - E)-I] 

X [(E + i'YJ - Erl + (E - i'YJ - E)-I] 

= 27Ti ~ o(E - E), (2.36) 
oE 

with the result that 

jOe-PE Tr (S3'l(E) a S3(E») dE 
oE c,c.m. 

= 27Ti(32VI2(0)V23(0) J e-/l«Il) dp 

+ O«V12)2, (V23)2). (2.37) 
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This example should give ample illustration of why 
one must be careful about interpreting 

(E + i'Y) - HO)-l - (E - i'Y) - Ho)-l 

as -27Tio(E - Ho). It also illustrates some other 
general points. 

(i) The (E + i'Y) - E)-l + (E - i'Y) - E)-l singular
ity in T 3(E) does not cause the trace or b3 to be sin
gular. It only requires that we be careful with the 
contour of integration. 

(ii) Even though one cannot put 

(E + i1) - HO)-l - (E - i'Y) - Ho)-l 

= -27Tio(E - Ho) 

in (2.33), the trace in (2.35) still depends, to our 
present accuracy, only on on-shell quantities. This 
follows from the fact that if terms of order (V12? and 
(V23)2 are neglected, V12 and V23 are the on-shell two
body T matrices. As we shall see, an analogous but 
less trivial result is true in higher orders. 

(iii) One can easily see that the reason that the 
above singularity in T3 coincides with the singularity in 
(E + in - Ho)-l - (E - in - Ho)-l is that we took 

a forward matrix element of [S;-1(aS3/oE)]c' For a 
general matrix element 

(pi (S;l o~ S3)cIP')c.m. , 

the two singularities do not coincide and 

(E + ir; - HO)-l - (E - ir; - Ho)-l 

can be replaced by -27Tio(E - Ho). This is why the 
small angle limit is useful. 

Finally we record a useful variant of (2.28). By 
integrating by parts, one readily verifies that 

Tr (U n)c.m. = t7T f e-fJE 1m Tr [A In SnCE)]c,c.m. dE, 

(2.38) 

where the subscripts c and c.m. have the same meaning 
as before. 

E. On-Shell S-Matrix Formulas 

Using the same methods as were employed in 
obtaining (2.28), one can show that 

Tr (U nei8J3)c.m. == F nCO) 

= _1_ fe-fJE Tr (AS-\E) if S(E)ei8J3) dE, 
47Ti iJE c,c.m. 

(2.39) 

where, as before, ei8J 
3 is a rotation around the third 

axis in the c.m. The derivation of (2.39), which will be 
left to the reader, depends on the assumption of 
rotational invariance so that eioJ3Se-i8J3 = S, etc. 

As is the case with (2.28), a proper derivation of 
(2.39) involves starting in a finite volume, establishing 
the formula and then taking the limit of infinite 
volume. Rotational invariance can be preserved by 
taking the volume to be a sphere in the c.m. frame. As 
discussed above, the limit of infinite volume can be 
shown to be interchangeable with the limit as (j --+ O. 
Thus we may assume an infinite volume and a finite (j. 

The limit as f) --+ 0 will be taken later. 
The advantage of (2.39) is that it is easy to get on 

to the energy shell. Since the trace of 

(
AS-1 a sei8J3) 

oE c 

involves only nonforward matrix elements of 

(AS-1 a s). 
oE c 

the singularities in 

(E + i'Y) - Ho)-l - (E - i'Y) - Ho)-l 

no longer coincide with singularities of the T matrix. 
Therefore, in the absence of bound states, 

(E + i'Y) - HO)-l - (E - iY) - Ho)-l 

can be set equal to -27Tio(E - Ho)' The qualifying 
remark about bound states is necessary. This was, 
however, thoroughly discussed in I and need not be 
gone into here. Henceforth, we assume that there 
are no bound states. 

To give an explicitly on-shell version of (2.39), it is 
convenient to define some notations. Let 

Ip) == Ip1 ... Pn) = Et(2mE)-i(n-l) IE~), (2.40) 
(~Pi=O) 

where E = L p;/2m is the energy and ~ stands for 
some 3n - 4 dimensionless variables which, along 
with E, specify the c.m. momenta of the n particles. A 
particular choice for the set ~ might be the vectors 

Yi = Pi(2mE)-!, (2.41) 

which are not all independent but satisfy 

2 Yi = 0, L Y; = 1. (2.42) 

Let the volume element be 

dp = E-1(2mE)~(n-1) dE d~, (2.43) 

where dp is defined by (2.10). For the particular 
choice (2.42), d~ is easily shown to be 

d~ = (27T)30CL Yi)o(L Y7 - 1) 

X d3Y1/(27T)3 ... d3y n/(27T)3. (2.44) 
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Finally, let 

s(~,~, n 
= o(~ - n - 27Ti (E;I T(E + iO) lEn, (2.45) 

and 

S(;, E, Ron 

= 0(; - Ron - 27Ti (E;I T(E + iO)eiOJ3 IEn, (2.46) 

in an obvious notation. Note that we are defining 
on-shell S-matrix elements for a given energy E. With 
the above normalization, S is dimensionless. 

Now setting 

(E + i'Yj - Ho)-l - (E - i'Yj - HO)-l 

= -27Tio(E - Ho) 

in (2.39), which is allowed for e ¥- 0, and doing some 
algebra identical to that done in I, one finds 

Fn(e) = _1_. (roe-PETr (ASt(E) 'I S(E)eiOJ3) dE, 
47T1Jo aE c 

(2.47) 
where 

Tr (ASt(E) 1. S(E)eiOJ3
) 

aE c 

and 

= f d; df d;"(A;rS\f, E, ;") ~ S(;", E, Ra;)t 

(2.48) 

S\;, E, n = [S(;', E, m*, (2.49) 

A;;, are the matrix elements of the exchange 
operator defined in I. (2.50) 

The subscript "c" means the connected part as before 
and S-l has been replaced by st, since S is unitary 
on-shell. Finally, collecting everything together, the 
virial coefficient is given by 

! H 

bn = lim _n_._ fe- PE Tr (AS teE) ~ S(E)ei8J3
) dE, 

0 .... 0 47Tln! aE c 

(2.51) 

which is an explicitly on-shell formula. Equation 
(2.51) is our main result. Its use will be illustrated in 
the following sections. 

On-shell formulas for the terms bJn in the angular 
momentum sum are easily obtained by inserting (2.47) 
into (2.22). Also the analog of (2.38) 

bn = lim (n!P/27Tn!)fe-PE 1m Tr [Aei8J3 In S(E)]c dE 
0 .... 0 

(2.52) 
is sometimes useful. 

3. INTERIM SUMMARY AND NOTATION 

Equations (2.51) and (2.52) give explicit formulas 
for bn in terms of on-shell scattering amplitudes. The 
rule is always to compute the trace and do the integral 
over E before taking the limit as e - O. If one proceeds 
in this order the calculation is well defined at every 
step. Basically, what is happening is that forward 
nobody scattering amplitudes are being defined by a 
particularly simple limiting procedure. The forward 
amplitudes thus defined do blow up, but the integrated 
trace remains finite and does give the correct b". As 
mentioned before, because of rotational invariance 
the rotation, ei9J3 can be replaced by a rotation through 
an angle () about any axis. 

In the following sections, we compute the contri
butions to ba and b4 which come from pieces of 

[S-l(aSjaE)] which blow up in the forward direction. 
This provides an explicit demonstration of how (2.51) 
and (2.52) work. 

Of course, one must get the same bTl from (2.28). As 
mentioned above, in this equation one must be 
exceedingly careful about the integration contour. 
Consequently, (2.28) is not a manifestly on-shell 
expression. Nevertheless the final expressions one 
obtains from (2.28) are on-shell and do agree with 
(2.51). Below, we show this directly for b3 and b4 • 

This is accomplished simply by doing the E integration 
carefully and applying some identities from scattering 
theory. The angle e is never introduced here. To us, 
this is a most convincing demonstration of the 
correctness of the whole scheme. 

Actually, we have found that in practice neither 
(2.51) nor (2.52) are particularly convenient. This is 
because the states IE;) tend to be complicated. The 
most convenient expression for bTl seems to be 

which, as it stands, contains the full off-shell S matrix. 
However, with e¥-o we know that we can write 

so that everything ends up on-shell with an energy E. 

We use E instead of E to remind us of this fact. It is 
easiest to work out the traces in the Ip) representation 
defined in (2.10) and (2.11). To do this, one expands 

In Sn(E + iO) = -27Tio(E - Ho)Tn(E + iO) 

+ (27T)20(E - Ho)Tn(E + iO)O(E - Ho)T,,(E + iO) 

+ ... (3.3) 
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to obtain 
~ 

bn = -lim ~ Re (JdPe-P«P) (pI ATn[e(p) + iO] Ip') 
6-0 n! 

- hi f dp dp"e-P«p)<5[e(p) - e(p")] 

X (pi ATn[e(p) + iO] Ip") 

X (p"l Tn[e(p") + iO] Ip') + ... ), (3.4) 

where the state Ip') is defined by e 

Ip') = ei6J3 Ip) (3.5) 
and the energy is 

e(p) = (1/2m) 2: p;. (3.6) 
i 

Note that e(p') = e(p), so that (3.4) is on-shell. 
OUf calculations in the following sections will be 

based on (3.1) or some variant of it. The following 
conventions will be observed. 

(i) The symbol p without a subscript will be reserved 
for the set PI ... Pn momenta in the center of mass 
L Pi = O. An individual particle's momenta will 
always carry a subscript. 

(ii) The subscript "c.m." will be suppressed [as it 
is in (3.1)-(3.4)] with the understanding that we are 
always working in the c.m. system. 

(iii) The mass of all particles will be set equal to t 
so that the energy is e(p) = L pi. The symbol e with 
no argument will also be used as the energy variable 
in a T matrix, i.e., T( e). In this case it need not be the 
on-shell value of energy. 

(iv) When doing algebra and combinatories, the 
rotation ei8J3 will usually be suppressed. Since, by 
rotational invariance, ei6J3 commutes with all opera
tors of interest, this factor can be reinstated inside the 
trace at any stage in the calculation. It is best to think 
of the symbol "Tr" as being equipped, either explicitly 
or implicitly, with a rotation eiflJ3

. The difference 
between (2.28) and (2.51), for example, is then just the 
difference between setting () = 0 before or after doing 
the integration over energy. Furthermore, in explicit 
calculations of matrix elements, the state eiflJ3 Ip) 
will usually be denoted simply as Ip') as in (3.4) and 
(3.5). When this is done the meaning should be clear 
from the context. 

(v) Exchange will generally be ignored and the 
exchange operator suppressed. 

The general matrix element 

(pi T( e) Ip') (3.7) 

will be called "on-shell" if e(p) = e = e(p'), and 
called "forward" if p = p'. Sometimes Ip') will be 
ei6Ja Ip) so that €(p) is automatically equal to e(p'). 
We shall often encounter T matrices involving only 
two of the n particles, say particles i and j. We shall 
denote them by 

(3.8) 

where Pk = p~ for k =F i,j and Pi + Pi = p; + p~ by 
momentum conservation. Momentum delta functions 
are always left out of T-matrix elements. The explicit 
meaning of (3.8) is 

(pl1ij(e) Ip') = (PiPjl T(e - k~}i) Ip~pj), (3.9) 

where T is the two-body T matrix and E - Lkid.i pi 
is the two-body energy. Invariance under the product 
of time reversal and parity requires that 

We will find this result very useful. Another useful 
fact is that 

(PiP}1 T(OJ) Ip;pj) 

= (Pi + Q, Pi + QI T(OJ') Ip; + Q, pj + Q) (3.11) 

for any Q, where OJ' = 2Q2 + 2Q. (Pi + Pj) + OJ. 

Also, to save writing we introduce the conventional 
Green's functions 

G(z) = (z - H)-I, 

Go(z) = (z - Ho)-I. (3.12) 

Calculations based on (2.38) which start out with 
() = 0 will be called "off-shell." (Even though we 
know that they end up giving on-shell results.) 
Calculations which start with () =F 0 are manifestly 
on-shell and hence are called "on-shell." Often the 
on-shell and off-shell calculations can be done at the 
same time provided we agree to call 

Go(e + ir;) - Go(e - in) 

= off-shell - 27Tir5( e - Ho), 

GoC E + ir;) + Go( E - ir;) 

= off-shell 2P/e - /{o, (3.13) 

and remember to keep r; fixed and finite until the end 
of the calculation. In connection with doing both 
kinds of calculations at once, we remind the reader of 
convention (iv) above. 

In the following section we will be breaking (In S)c 
up into 

(In S)c = (In S)clSing + (In S)clnonSing, (3.14) 
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where (In S)clSing contains all pieces of (In S)c which 
are singular in the forward direction on the energy 
shell. This splitting of (In S)c into two pieces is not 
unique, but this will not be important. What we will 
do is to take a specific division of (In S)c and compute 
only the contribution of (In S)clsing to bn • The 
remaining contribution from (In S)clnonSing will be a 
strictly on-shell object no matter how we choose to 
compute its trace. Therefore, when we have shown 
how to use the () ---+ 0 limit to compute the trace of 
(In S)clSing we will have shown that all of bn can be 
expressed in terms of on-shell quantities. Similarly, 
when we have shown that the "on" and "off" shell 
methods are equivalent for (In S)cISing, we will have 
shown that they are equivalent for all of (In S)c' 

4. SINGULAR THREE-BODY TERMS 

The contribution of singular diagrams to b3 was 
studied in detail using an angular momentum repre
sentation in II. Here we shall obtain the same results 
via the small angle limit. 

First let us write the logarithm appearing in (3.1) 
as a series 

00 

Tr (In S)c = - ! (11m) Tr [27Tib(e - Ho)T(e + iO)];:'. 
m=I 

(4.1) 

For simplicity the factor eiOJ 
a will be suppressed until 

needed. In counting the diagrams representing the 
terms in (4.1), we must keep each distinct diagram 
only once. Taking advantage of the invariance of the 
trace under cyclic permutations of operators, the 
factor m-1 may be conveniently eliminated by adopting 
the convention that two diagrams are the same if they 
can be obtained from each other by a cyclic permuta
tion of T matrices. 

The singular three-body diagrams are given in Fig. 
3. We use a wavy line to denote the factor (e - Ho + 
;0)-\ which is part of a single three-body T matrix, in 
contrast to the factors of 27Tib( e - Ho) which join 
different T matrices and are denoted by solid lines. 

p; 
FIG. 4. Kinematical variables in evaluating the three-body singular 

diagrams. 

These diagrams are easily summed (see II) giving7 

(1 127T) 1m Tr (In S)clSing 

= -ReTr (b(e - Ho)Tile)p-l- TJ3(e») , (4.2) 
e - Ho 

where P denotes the principal part, TI2 and T23 are 
two-body T matrices, and we have used the identity 

00 

! [27Tib(e - Ho)Tij]m 
m=O 

= [1 - 27Tib(e - Ho)'Iiir i 

= 1 + 27Tib(e - Ho)T;tj • (4.3) 

For our purpose of illustrating the small angle limit, it 
is not necessary to perform this sum. It will be clear 
as we proceed that summing is irrelevant except to 
simplify the writing. 

The kinematic variables are depicted in Fig. 4. 
Substituting (4.2) into (3.1) and integrating over e, 
we find 

b3sing = lim - 3tfJfdpe-PdP) 
8-+0 

x Re [(pI TI3(e) Ip") 

x (p"l TI2(e) Ip')P(p~ - p~2rl], (4.4) 

where Ip') = eiOJalp) as in (3.5), and the intermediate 
momenta P" are determined by momentum conserva
tion, i.e., 

p~ = PI, 

P; = p~, (4.5) 

p~ = - p~ - P; = - PI - p~. 

FIG. 3. Three-body 
singular diagrams. The 
circles (there can be any 
number of them joined by 
solid lines), denote two
body Tmatrices. The wavy 
line denotes a factor Go. 
Notice that diagrams ob
tained by cyclically per
muting the T matrices 
are identical by our con
vention. 

P3 Note that whereas the integrand in (4.4) is a piece of 
the on-shell three-body amplitude, the two-body T 
matrices T13 and Tlt2 are not on-shell except at the 
point p~2 = p~. It is convenient to evaluate (4.4) 
using the variables p~ , pg and YI , Y a , cp and cp defined 
by 

p' 
2 

pf = VI COS 9', p~ = 'VI sin 9', 

p~ = Ya cos (cp + cp), p~ = Ya sin (cp + cp). (4.6) 

We do not need P2 because of the condition PI + P2 + 
Pa = O. Evidently cp is the angle between the pro
jections of PI and Pa onto the (x, y) plane. One easily 
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verifies that 

dp = (27T)-6V1V3 dV1 dV3 d4> dcp dp~ dp~. (4.7) 

By rotational invariance, the integrand is independent 
of cp, so that integrating over cp just gives a factor of 
27T. Also, because the singular denominator 

pi - p;2 = 2(P1 . P3 - PI • p~) 
= 2V1V3[COS 4> - cos (4) + 6)] (4.8) 

is independent of p~ and p~, it is convenient to do the 
integrations over the latter variables first. Defining 

G(V1' '1'3,4>,6) = -(27T)-53~,B J dpi dp~e-Pdp) 
X Re [(pi T:3Ipl)(p"1 T{2Ip')] (4.9) 

one has 

b3 = lim IdV1 dV3 d4>G(VI' '1'3' 4>, 6) 
0 .... 0 

X p[cos 4> - cos (4) + 6)tI. (4.1 0) 

Note that, as (4.10) stands, the limit as 6 ---+ 0 cannot 
be brought inside the integral. This is because we have 
already set 

(e + irJ - HO)-l - (e - irJ - HO)-l 

= - 27TiO( e - Ho) 

to get on shell. We can, however, transform the 
integrand to a form in which the limit and integral 
can be interchanged. First we charge variables from 
4> to 4>' = 4> + t6. Since the integrand is periodic in 4>, 
the limits of 4>' can be taken to be the same, -7T to 7T, 

as those of 4>. Then one has 

b3 = lim roo roo r" dV1 dV3 d4>' 
0 .... 0 Jo Jo L .. 

G(V1' '1'3, 4>' - t6, 6) 1 
X P --. (4.11) 

2 sin (6/2) sin 4>' 
Next we note that, by rotational invariance, the 
rotation ei8J3 could have been replaced by e-i6J3 

without in any way effecting the value of the trace. 
Thus we can add to (4.11) the same expression with () 
replaced by -6 and divide by two to obtain 

b3 sing 

= lim iJdV1 dV3 dcp' 
8 .... 0 

[G(V1' '1'3, cp' - 6/2,6) - G(Vl' '1'3, cp' + 6/2, - 6)] 
X 

1 xp--
sin 4>' 

2 sin 6/2 

= tfdv1 dV3 d4>(- 1. oG (VI' '1'3' 4>, 0) 
204> 

oG ) 1 + 06 (VI' Va, cp, 0) P sin cp , (4.12) 

which is finite since G is finite as 6 ---+ O. Since the 
integrand is periodic in 4>', integration over the 
principle part of (sin 4>')-1 is well defined. 

Now let us compute the derivatives of G which 
appear in (4.12). To this end, we display the general 
functional form of the T matrices by writing 

(pi Tt3(e) Ip") = (P2P31 T\e - pi) Ip"p~) 
= F(w, w", t, e'), (4.13) 

where 

e' = e - pi, 

w = (Pa - P2)2 

= (2p~ + pi)2 + 4'1'; + vi + 4'1'1'1'3 cos 4>, 
w" = (p~ - p~? ( 4.14) 

= (2p~ + pi)2 + 4'1'; + v; + 4'1'1'1'3 cos (4) + 0), 

t = (P3 - p~)2 = 2'1';(1 - cos 6), 

and the total energy e is 

e(p) = pi + p~ + P; 

= 2[(pi)2 + (p~)2 + pip~ + vi + v; + '1'1'1'3 cos 4> 1. 
(4.15) 

According to (3.10), F is symmetric in wand w", 
that is 

F(w, w", t, e) = F(w", w, t, e). (4.16) 

It is now straightforward to compute the desired 
angular derivatives of (pi ri3 Ip"). One finds 

but according to (4.16) 

so that 

(4.19) 

and 
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Obviously, the same result holds for the derivatives of Inserting the intermediate state to bring (4.24) into 
(pili T12Ip'), and clearly the form of (4.4) with the € integration not yet done, 

one finds 

Then putting everything together, one has 

(_l.E. + l.)G/ 
201> 00 0=0 

= 'VI V3 sin 1>3~Jd Z d Z ~ 
(27T)5 PI P3 0€ 

X [e-P< Re (pi TJ3(€) Ip) (pi TI2(€) Ip)]!<=E(P)' 

(4.22) 

and changing variables back to p, the final result is 

Thus we have an explicit example of how the small 
angle limit can be used to give well-defined expres
sions for bn in terms of on-shell scattering amplitudes. 
Note that (4.23) does contain some off-shell derivatives 
of two-body amplitudes. These are, however, part of 
the on-shell three-body amplitude. This should not be 
surprising if one remembers that the on-shell three
body T matrix as constructed from, say, the Fadeev 
equations, depends on the complete off-shell two-body 
T matrix, not just its on-shell value. What counts in 
the present context is only that b3 can be written in 
terms of on-shell three-body amplitudes. This is guaran
teed by the fact that, for finite e, our calculations are 
explicitly on-shell. The result in (4.23) is obtained by 
letting e approach zero after calculating with finite e 
and is therefore an on-shell quantity. The part 
b3 !lonsing of b3 which comes from the rest of the expan
sion of In S is also explicitly on-shell. Thus we have 
obtained an expression for b3 which contains only 
strictly on-shell three-body scattering amplitudes. 

As stated above, we can also obtain (4.23) starting 
with (2.28), where e = 0 from the beginning. This 
calculation starts off-shell. If in (4.2) we substitute 
(3.13), the result is 

(1/27T) 1m Tr (1n S)c!sing 

= (1/47T) 1m Tr ([Go(€ + in) - Go(€ - i'1)]Ti2(f2) 

X [Go(f2 + in) + Go(f2 - i1})rJa(f2)]}. (4.24) 

- -3~(3 r -p<J basing - fm dEe dp 
47T '" 

X ([€ - f2(p) + intI - [€ - €(p) - intI} 

X {[€ - €(p) + intI + [€ - €(p) - intI} 

X (pi rI2(€) Ip)(pi TJ3(€) Ip), (4.25) 

since for e = 0, p = pi = p". Now we proceed as we 
did in (2.36) we obtain 

3 

b3Sing = _~lI(3 ReJ d€e-P'j dpb'[€ - €(p)] 

X (pi T12(€) Ip)(pl rJ3(€) Ip), (4.26) 

which is clearly the same as (4.23). The off-shell 
calculation is obviously much easier, but, having 
obtained (4.23) in this manner, we would then have to 
show that we are really dealing with an on-shell object. 
This would essentially amount to going through the 
whole e ....... 0 business to show that the integrand in 
(4.23) was a certain limit of the on-shell three-body 
amplitude as one approaches the forward direction. 

5. SINGULAR DIAGRAMS IN b4 

Due to algebraic complexities, it is very difficult to 
apply the same kind of detailed analysis on ba sing to 
the singular diagrams of arbitrary number of particles. 
While already vast in number and complex in struc
ture, such a detailed analysis can still be done for the 
four-body diagrams with a reasonable amount of 
labor. Although those with more than four particles 
are much more complicated, we feel that the four
body ones already contain most of the qualitative 
features of singular diagrams in general. 

Our purpose here is not to evaluate the contribution 
of all four-body singular diagrams to b4 , but to 
demonstrate the small angle limit interpretation of the 
S-matrix formula for b4 by evaluating representative 
singular diagrams and thereby exhibiting qualitative 
features which are absent in three-body diagrams. 

Figure S shows typical four-body singular diagrams. 
The ones in Fig. Sea) are made up of two nonsingular 
parts joined by a single energy denominator or 15-
function. They are qualitatively the same as those three
body diagrams shown in Fig. 3. The ones in Figs. 5(b), 
and 5(c) are characterized by two intermediate 15-
functions, or two energy denominators, or one each, 
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(a) 

2 3 

p~ 

P3 

PI 
p~ 

p' 
3 

P4 

p; pi p. 

P; P~ 6 7 

(b) (c) 

FIG. 5. Four-body singular diagrams without exchanges. (a) Diagrams with two nonsingular parts joined by one line. (b), (c) Diagrams 
with three nonsingular parts joined by two single lines. 

joining three nonsingular parts. These are, roughly 
speaking, more singular than the three-body diagrams. 
There are also singular diagrams involving "ex
changes" owing to the identity of particles. These 
singular diagrams will be discussed later in this 
section. We now proceed to study the diagrams in 
Fig. 5. For the clarity of discussion, we shall leave the 
part of algebra which is too complicated for a con
tinuous presentation to the appendices, which may 
also be read independently. 

We will not make explicit changes of variables in 
the integrals as was done in the calculation of ba sing' 

Rather, the actual changes to cylindrical coordinates 
will be left to the readers imagination. Also, we will 
generally ignore the z components of momenta. It is 
clear that the pZ played no real role in ba , and we 
might as well have worked in an imaginary two 
dimensional world. We will make heavy use of the 
symmetry of various integrands with respect to 
rotations, interchange of particle labels and inter
change of initial and final momenta in aT-matrix 

element. Equation (3.10) will be used often and should 
be kept in mind. 

A. Diagrams a 

The contribution of diagrams of the type shown in 
Fig. 5(a) can be summarized as 

1 
- - 1m (Tr In S)a 

27T 

= Re Tr ~(E - Ho)A2P(1/E - Ho)A3' (5.1) 

which resembles (4.2). A2 and Aa are nonsingular parts 
involving two and three particles, respectively. The 
small angle limit can be carried out the same way as 
was done in the last section, and will not be repeated 
here. 

B. Diagram b 

This subsection is a simplified version of Appen
dix C. 

First let us sum the repeated two-body T matrices 
in Fig. 5(b) to obtain Tt's. Again, this is unnecessary 
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PI Pz 

p' 
2 

P3 

p~' 
pi 

3 

P4 

p' 
I P~ 

(0) ( b) 

FIG. 6. Geometry of the momenta in Fig. S(b). 

except for a simpler notation. We have 

-(1/21T) 1m (Tr In S)b 

= Re Tr b(€ - Ho)[Ti2GoTI3GoTI4 

+ Ti221Tib(€ - Ho)Ti3GOT{4 

+ tTI221Tib(€ - Ho)Ti321Tib(€ - Ho)Ti4]' (5.2) 

The factor t in the last factor is to compensate for the 
fact that the cyclic permutations of the last diagram 
are identical. Substituting (5.2) in (3.1), we find their 
contribution to b4 : 

4-i (b4h = -lim ,BfdPe-PdP) 
8-+0 

X Re (pi TI2Ip") (pili TI3I plll) (pllli TI4Ip/) 

X [P(p~ - p~2rIp(p~ - p'{,2r l 

- }1T26(p; - p'{2)6(pi - p'{'2)]. (5.3) 

We shall ignore the z components of the momenta, 
since they are irrelevant here. Figure 6 shows the 
geometry of the vectors PI' P~, and p'{' and p~. The 
T-matrix elements together with the Boltzmann 
factor is a function of PI, p~, P'{', aI' a2 , and a3 • 

Ex.cept for the total energy variable [see (C4)] 

E(p) = pi + pi + p~ + p~, (5.4) 

which is not symmetric in P; , p~2, and p'{'2 because of 
the p; term, the product of the three T-matrix elements 
is otherwise completely symmetric in PI' P~, and p~'. 
We may regard PI' p~, pt as the integration variables. 
For any function u(pD which, in addition to its pi 
dependence explicitly indicated, is also a symmetric 
function of pi , p~2, and p~'2, we have 

u(pi)[P(p~ - p~2)-lp(pi - pt2r 1 
- (1T2/3)o(pi _ p'{'2)] 

= Hu(pi}P(pi - p~2rlp(pi - p~'2rI 

+ U(p~2)P(p'{2 _ pirlp(p~2 _ p'{,2r1 

+ U(pt2)p(p'{'2 _ pD-Ip(p'{'2 _ p'{2rl 

- 1T20(pi - p'{2)r5(pi - p'{,2)u(pD]. (5.5) 

Let p~ = i(pi + p~2 + p'{'2) and expand u around 

pi. (5.5) reduces to 

1 0
2 

(2) + O( 2 2 112 2 ",2 2) "6 O(pi)2 U PI PI - PI' PI - PI' PI - PI . 

(5.6) 

It follows that as () ~ 0, when pi, p~2, p'{'2, and if all 
become the same, we have 

a a 
--=~--

opi O€(p) 

and, for (5.3), 

4-i (b4)b = -,8 f dp~ ::2 (e-PE(pl TI4Ip)(pl TI3(E) Ip) 

x (pi Ti2(€) Ip»£=dll)' (5.7) 

This result can also be obtained from an off-shell 
calculation as shown in Appendix C. 

The spirit of the above calculation is quite clear: 
One takes advantage of the symmetries and trans
forms the integrand into a form where the () ~ ° limit 
becomes obvious. In spite of the principle parts and b 
functions, the ex.pression (5.5) is effectively a smooth 
function of a as shown by (5.6). 

C. Diagrams c 

Next we apply the small angle limit prescription to 
the evaluation of the diagrams in Fig. 5(c). These 
diagrams are different from those in Fig. 5(b) in that 
they do not possess symmetry under cyclic permutation 
and are more difficult to evaluate. This subsection is a 
summary of the steps leading to a clear small angle 
limit. The full detailed discussion is given in Appendix 
D, which is complete by itself. 

Figure 5(c) gives, after being summed over repeated 
two-body T matrices, 

-(1/27T) lm (Tr In S)c 

= Re Tr b(€ - Ho)[T;4GoT13GoTi2 

+ T1427TiO(E - Ho)TLGoTi2 

+ TJ4GoTJ321TiO(E - Ho)Ti2 

+ TJ427Tib(E - Ho)TJ3211"iO(€ - Ho)Ti2 
t t t + T23GoT12GoT34 
t t t + T12GoT34GoT23 

+ TJ3GoT i221TiO(E - Ho)TJ4], 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
(7) (5.8) 

where the labels (1 )-(7) identify the terms with the 
diagrams in Fig. 5(c). Taking advantage of the 
symmetries under space inversion, time reversal, and 
interchanging particle labels, we can simplify (5.8) 
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(a) 

-k- P~ 

q-p, ---- -q-p~ 
q'-p 1 - - - -q'-p~ 

q'~ P 1 - - - - - -q"- P~ 

k'- P, -k' -p~ 

(c) 

(b) 

FIG. 7. (a) Definition of angles in evaluating Fig. 5(c). (b) The 
two-body T matrices in Fig. S(c). (c) A term in the perturbation 
expansion for T/3 • 

considerably and obtain 

1 
- - 1m (Tr In S)c 

27T 
= Re Tr 6(E - Ho){T!iPjE - Ho)Tt3(PjE - Ho)Ti2 

+ T 2
t
3(PjE - Ho)[Ti2(PIE - Ho)T!4 

+ TJ4(PjE - Ho)Ti2] 

+ 7T2TJa6(E - Ho)Ti26(E - H o)T!4}' (S.9) 

For a simple illustration of the main point of the 
calculation, let us regard the two-body T-matrix 
elements in (S.9) as constants. We substitute (S.9) in 
(3.1) and integrate over E. A little algebra gives 

(b4)b = -4~~ J dpe-PE (p)(T t)3 

x 2P 1 P 1 (5 10) 
2Pl • (k' - k) 2p4 • (k - k') , . 

where the vectors k and k' are defined as 

k = PI + P2 = - P3 - P~, 

k' = p~ + p~ = -p~ - p~. (5.11) 

Equation (S.lO) is analogous to (4.4). It has two 
denominators instead of one. It suggests that we can 
do the same as we did in Sec. 4 for each denominator. 
Let us define the angles 4>1 and 4>4 by Fig. 7(a). Then 

p~ = pi + k2 + PI k cos 4>1 , 
pi = p! + k2 + P4k cos 4>4' (5.12) 

E(p) = 2(p~ + p~ + Plk cos 4>1 + P4k cos P4)' 

We then change the variables 4>1' 4>4 to 4>1 - ()12, 
4>4 + ej2 so that we have 

- 2k • PI = 2kpl cos (4)1 - ej2) == X-, 

-2k' . PI = 2kpl cos (4)1 + ej2) == x+, 

2k· P4 = 2kp4 cos (4)4 + (12) == y+, (S.13) 

2k'· P4 = 2kp4 cos (4)4 - ej2) == y-. 

The total energy is, by (5.12), 

E(p) = 2(pi + p~ + k2) + x- + y+. (S.14) 

Thus, the integrand of (S.lO) is proportional to 

e-p",-p(x- - x+)-le-PY+p(y+ _ y-)-l 

= tP[e-PX- - e-P"'+j(x- - x+») 

X P[(e-PY- - e-PY-)/(y+ - y-)], (5.15) 

where we have symmetrized this integrand by taking 
advantage of the fact that when 4>1.4 ~ -4>1.4' 
x± ,y± ~ x'F ,y'F. As e ~ 0, we have x+,y+ ~ x-,y
and (5.15) becomes the second derivative of the 
Boltzmann factor with respect to E(p). Equation (5.10) 
becomes 

(b4)b = -4!~ J dp ~ OE~:)2 e-PdP
\T

t
)3. (5.16) 

When the p dependence of the T-matrix elements are 
taken into account, the algebra becomes more 
complicated but the procedure is about the same. The 
calculation in Appendix D shows that 

J 
1 (i? (b4)b=-4!~ dP"2 O€2e-PE(pjTat4(E)jP) 

X (pi TJ3(E) jp)(pi Ti2(E) IP>L«p)' (5.17) 

It is easily shown that (S.17) can be obtained by 
using off-shell forward amplitudes. [See (D34) and 
(D35).] 

D. Singular Exchange Diagrams 

For the sake of simplicity we have ignored the iden
tity of particles. As was shown in detail in Paper I, 
it can be accounted for by introducing an antisym
metrization operator A for Fermions (a symmetriza
tion operator for Bosons) into the trace. It is sufficient 
to discuss the Fermion case here. We have 

Tr (In S)c ~ Tr (A In S)c' 

A = !(-)pp, (5.18) 

where P permutes the particle labels, (-)P = ± I 
depending on whether P is even or odd, and the 
connected diagrams defined by the subscript c now 
include those joined by exchanges. 
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FIG. 8. Four-body singular diagrams with exchange. (a) Exchange unrelated to the singular behavior. (b) Singular behavior closely related 
to exchange. (c) These diagrams are already included in (b) since they are cyclic permutations of those in (b). In (3), we have inverted the 
order of the labels. (d) and (e) are equivalent (by cyclic permutation). (f) This is not a singular diagram. It is equivalent to (g). 

As can be easily shown, for three-body diagrams, 
those involving exchange are nonsingular. This is not 
the case for four-body diagrams. Figure 8 shows the 
general singular four-body exchange diagrams that 
are qualitatively different from the diagrams we 
discussed so far. Those with exchanges within two
body T matrices will not be discussed since they cor
respond to modifications of two-body T matrices 
only. 

Notice that we still keep our diagram convention 
that each diagram includes all cyclic permutations of 
its T matrices. For example, the diagrams in Fig. 
8(c) are already included in 8(b) and must not be 
counted again. 

In the diagrams shown in Fig. Sea), the exchange 
involves particles 3 and 4, which play no role in the 
singular energy denominator. These diagrams can 
thus be included in the category of Fig. 5(a), which 
has been discussed already. The diagrams in Fig. 8(b) 

will be studied in detail shortly. They are the only 
four-body singular exchange diagrams which cannot 
be included in Fig. 5(a). The diagram in Fig. 8(d) may 
look like the third diagram in Fig. 8(b), but because of 
the order of the T matrices it is quite different, as one 
can write down in detail and see. In fact, it is already 
included in Fig. 8(e), which again falls in the category 
of Fig. 5(a). The one in Fig. 8 (f) is not singular despite 
its appearance. It is equivalent to the one in 8(g). 

The diagrams in Fig. 8(b) are either disconnected 
pieces joined by an exchange, or with the singular 
denominator (or 15 function) involving the exchanged 
particle. Let us write down their contribution to 
-(1/27T) 1m (Tr A In S)c; 

ReTr(-P23)(j(E - Ho)TJ4GoTI2' from I, 

Re Tr (-Pd(j(E - Ho)TJ4GoTI2' from 2, 

Re Tr (-P23)(j(E - Ho)[~TJ427Til5(E - Ho)TI2 

+ tTJ427Ti(j(E - H o)Ti2], from 3, 

(5.19) 
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where we have summed the repeated two-body 
T matrices to obtain the Tt's, P23 exchanges 2 and 3, 
and we have written the contribution of Diagram 3 as 
the average of (b3) and (c3). Combining the terms in 
(5.19), we obtain 

am) 1m (Tr A In S)1+2+3 = Al + A 2 , 

tIt Al = Re Tr P2315(€ - Ho)T34 P -- T 12 , (5.20) 
€ - Ho 

A2 = Re Tr P23b(€ - Ho)TJ4 P _1_ T:~. 
€ - Ho 

Multiplying (5.20) by the Boltzmann factor and inte
grating over € we have 

b4x = b41 + b42 , 

b41 = -4~P f dpe-P<A 1 d€ 

= lim 4~P RefdP 
8~O 

X e-Pdp
) (P2P41 Tt IP~P~>(PIP31 Tt Ip{p~> 

x P(p~ - p~r\27T)3b(Pl + Pa - p{ - p~), 

(5.21) 

b42 = 4~ P f dpe-PfA 2 d€ 

= lim 4l P RefdP 
8~O 

X e-Pdp
) (P3P41 Tt Ip~p~> (pIP~1 Tt Ip{p~> 

x P(p~ - p~2r\27T)3<5(P2 - p~). (5.22) 

The quantities b41 and b42 are contributions from 
Fig. 8(bl) and 8(b2), respectively, with the inter
mediate Go replaced by the corresponding principle 
parts. The <5-function parts of the Go are removed 
by the diagram in Fig. 8(b). 

Consider (5.21) first. The off-shell energy variables 
of the two-body T-matrix elements are evaluated at 

€(p) - p~ - p; = p~ + pL for T14' 

€(p) - p~ - p! = pi + p~, for T:2 • (5.23) 

Equation (5.21) is unchanged if we interchange 1 and 
4,2 and 3. This corresponds to putting Tl2 higher than 
T14 in Fig. 8(bl). Under this interchange, the principle 
part in (5.21) changes sign. Therefore, we can write 
the T-matrix elements and the principle part as 

H(P2P41 Tt(pi + p!) Ip~p~> (PIPal Tt(pi + pD Ip{p~> 
- (PIPal Tt(p; + pi) Ip{p~> 
x (pzP41 Tt(P5 + p!) Ip~p~>lP(p~ - p~)-I. (5.24) 

I n the limit as e -* 0, pz ->- Pa, and (5.24) simply 
gives the derivative of the T-matrix elements with 

respect to their off-shell energy variables, i.e., (5.24) 
becomes 

H~ (pi T;i€) Ip)(pi T12(€) 'P)L«p)' (5.25) 

It follows that (5.21) gives 

b41 = 4ip Ref dp(27T)3<5(P2 - Pa)e-P«P) 

X H~ (pi T1i€) Ip)(pi T12(€) IP»<=«P)' (5.26) 

We now turn to (5.22). We shall use the variables 
PI, P4 , k = PI + P2 and the angles 4>1' 4>4 used in our 
discussion of Fig. 5(c). [See Fig. 7(a).] 

For the denominator in (5.22), we have 

p~ - p~2 = (k - Pl)2 - (k' - Pl)2 

= 2(k - k') • PI 

(5.27) 

where x± are defined in (5.13). The angular depend
ence of the T-matrix elements have been analyzed. 
[See (D20) and (D21).] We have 

(P3P41 T\pi + p!) Ip~p~) = f3ip~ + p!; y+, y-), 

(PIP;I Tt(p; + p~) Ip{p~> = fI2(P~ + p~; x-, x+). 

(5.28) 

In view of the momentum 15 function in (5.22), we 
have pi = pL so that 

€(p) = pi + p! + 2pi 

= p~ + p~ + 2(p~ + k2) + 2x-, 

p~ = pi = p; + k2 + X-. (5.29) 

The condition given by this b function can also be 
written as 

k+k'=PI-P~, (5.30) 

since pz = k - PI' p~ = k' - p~. It follows that 

p~ = (k + k' - Pl)2 

= (k + k')2 + p~ - (x- + x+). (5.31) 

The condition (5.30) is shown graphically in Fig. 9. 
The <5 function in (5.22) is thus 

b(PI sin 4>1 - P4 sin 4>4) 

x b(PI cos 4>1 + P4 cos 4>4 + Ik + k'l). (5.32) 

If we change the signs of 4>1 and 4>4 simultaneously, 
(5.32), (5.31) are unchanged. The functions /34 and /12 

k + k' 

"Mi&" </>. k' 
I 8 

k 

FIG. 9. Geometry of the condition 
k + k' = p, - p~. 
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are also unchanged if we hold their first arguments 
fixed. The only thing that is not invariant under this 
change of signs is the pi occurring in the energy 
variables in (5.28) and (5.29). Again, the effect of the 
principle part in (5.22), which has theformP/(x- - x+) 
by (5.27), is to differentiate with respect to the energy 
variable in the () -+ 0 limit. Now we must notice that 
there is a factor 2 in front of the x- in E(p) in (5.29). 
Thus, there appears a factor of 2 in differentiating the 
energy variable of the Boltzmann factor. Therefore, 
for the integrand of (5.22), we have 

b(p2 - P3)G ~ e-P
< (pi TllE) Ip) (pi Ti2(E) Ip) 

+ (pi TJ4Ip)(pl TilE) Ip) ~ :E e-/1<L«p/ (5.33) 

where the last term takes care of the factor 2 we just 
mentioned. Combining (5.26) and (5.33), we have 

b4x = b4I + b42 

= 4f fJ Re J dpb(p2 - P3) 

x (E.- e-P< (pi TJlE) Ip)(pl Ti2(E) IP») . 
OE <~£(p) 

(5.34) 

Notice that the Boltzmann factor in (5.26) is not 
differentiated, while the one in (5.33) gives rise to two 
terms. The sum becomes a total derivative as (5.34) 
shows. 

Finally, let us evaluate b4x using off-shell amplitudes 
in the momentum representation. Consider Al in 
(5.20). Let us replace the 15 function and the principle 
part by (2.36). Then we have 

A~ = Ref dp{ -ib'[E - E(p)]} (pi T~iE) Ip) 

x (pi Ti2(E) Ip) (27T)3b(p2 - P3)e-P<. (5.35) 

We put a prime on Al because (5.35) is not the same as 
the Al in (5.20) where the trace is interpreted as the 
small angle limit (3.1). From (5.35), we obtain 

b~1 = 4f fJ J dEe-P<A{ 

= 4f fJ Re J dp H~ e-P
< (pi T!iE) Ip) 

x (pi Ti2(E) IP»)<~£(p)(27T)3b(P2 - P3)' (5.36) 

The same procedure shows that A~ leads to the same 
result. The sum b~1 + b~2 = 2b~1 is clearly the same 
as (5.34). We have thus observed the interesting fact 
that, in evaluating individual singular diagrams 
contributing to b4 , the on-shell fJ -+ 0 method and the 
off-shell method do not always agree. Of course, 

the sum of all singular diagrams always comes out the 
same, as was shown above. Note that the failure of 
the two methods to agree when only a single diagram 
is taken into account is not an indication that there is 
something wrong with our general proof. We can 
obtain (3.1) from the rigorously proven (2.13) only 
when S is the complete S matrix not just some piece 
of it. 

To summarize, what we have accomplished in this 
section is an analysis of the singularities in four-body 
amplitudes which are relevant for b4 • We have shown 
explicitly for representative diagrams that the small 
angle limit for defining the trace is well defined and 
gives the same results as do calculations using off-shell 
matrix elements. We feel that these results demon
strate sufficiently the validity of our general con
clusions. 
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APPENDIX A 

We wish to prove that (2.13) holds. Since 

({x}1 Un I{Y})c.m. 

is a continuous function of its argument, this evidently 
boils down to proving that 1({x}1 Un I{Rox})1 is 
uniformly bounded (for sufficiently small fJ) by an 
integrable function of {x}. 

First we consider Maxwell-Boltzmann statistics, 
where the U function is given by Feynman's path 
integral formula 

({x}1 Un I{Y})c.m. = {{X} exp (- m {P {z(uW dU) J{y} 2 Jo 
x 'D'n({z}YD{z(u)} (Al) 

(Maxwell-Boltzmann statistics), 

where, in Feynman's notation, the integration 
i>{z(u)} is over all paths {z(u)} such that {z(O)} = {y} 
and {z(fJ)} = {x}. 'D'n({z}) is closely related to the 
classical cluster function; it is 

'D'2 = exp (-f VI2({Z(U)}) dU) - 1 

'D'3 = exp (-f V123({z(u)}) dU) 

- exp ( - f V12({Z(U)}) dU) 

- exp ( - f V23({Z(U)}) dU) 

- exp ( - f VI3({Z(U)}) dU) + 2, (A2) 
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etc., where, for example, V12 is the potential energy of 
the two particles 1 and 2 and V123 is the total potential 
energy of the three indicated particles. The general 
scheme for constructing CO' n should be clear. Another, 
shorter notation for (AI) is 

<{xli Un I{Y})c.m. = j dPxyCO'nC{z}) (A3) 

(Maxwell-Boltzmann statistics), 

where dPxll is the Weiner measure.s 

If -Bn is a lower bound on the total n-particle 
potential energy and if all potentials go to zero for 
large separations between particles, then it is easy to 
show that for any pathS 

(A4) 

where Cn is the number of terms in the expression 
for Un as a sum of products of W functions, i.e., the 
number of terms on the right in (A2). Then, since the 
Weiner measure is positive,S 

JdPxyCO'n({Z}) ~ CneflBnJdPxy, (AS) 

and it is useful to remember that 

j dPxy = n-i ).3-3n exp [-(mJ2p)({x} - {y})2], (A6) 

where {X}2 = I x~, etc. 
In the above formulas and in what follows, it is 

important to keep in mind that we are working in the 
n-particle c.m. Thus, I Xi = 0, I Yi = 0 and the 
paths {z(u)} satisfy Ii Zi(U) = 0 for all u. 

Now let Px be the radius in the c.m., i.e., Px = 
<I (Xi)2)!. We are interested in large Px and, for 
reasons to become apparent later, we restrict {y} to 
lie in the region I (Xi - Yi)2 < 16(n4)-lp;. For 
{y} = {Rex} this can be accomplished by restricting 
() to small angles which satisfy 

1 - cos () < (32n4)-1. (A7) 

Having restricted () in this way, let us divide the paths 
in (A3) into two classes. Class I is defined as all those 
paths for which Li [Xi - ZJU)]2 < (16n4)-lp;, and 
Class II contains all other paths. Then, in an obvious 
notation, 

f dPxllCO'n({z}) = idP",YCO'n({Z}) + Ldp.,yCO'n({Z}) 

(A8) 
and 

J dP",uCO'n({z}) ~ ldP",y'1Jn({Z}) + cnefJBnLdP"'II' 

(A9) 

where (AS) has been used. The two integrals on the 
right-hand side of (A9) will be treated separately. 

For fixed {x}, consider the function q;({y}, 1'1) defined 
by 

q;({y},p) = r dPxy =jdP",y - r dP",y, (AIO) In Jr 
where the 1'1 dependence on the right is implicitly 
contained in dP",y. It satisfies the heat conduction 
equation 

(IJ2m)\12q; = (ajap)q;, (All) 

where \1 2 is the Laplacian in the 3n - 3 dimensional 
space of the {y}, and the boundary condition 

q;({y},O) = o. (AI2) 

To determine rp completely we need one more bound
ary condition. To this end, we note that S I dPxy is the 
Green's function for an imaginary time Schrodinger 
equation with an infinite potential barrier on the 
surface Ii (Xi - Yi)2 = (16n4)-lp;. Applying such a 
barrier just keeps all paths in a sphere of radius 
(4n2)-lp", centered at {x}, i.e., it just picks out paths of 
class I. Evidently S I dPxy vanishes when {y} approaches 
the potential barrier and, combining (A6) and (AIO), 
one has 

q;( {y}, 1'1) 12;(xi-Yi)2~(16n 4)-lpx 2 

= n-i).3-3n exp (-~ p2). (A 13) 
32pn 4 x 

The problem of finding q; has thus been reduced to 
that of solving a simple spherically symmetric heat 
conduction problem in 3N - 3 dimensions. Actually, 
we do not even have to solve this problem. Think of rp 
as a temperature distribution which vanishes every
where inside the sphere I (Yi - Xi)2 = (16n 4)-lp; at 
1'1 = 0 and which has the temperature prescribed by 
(A13) on the sphere. Then it is obvious that for a 
given 1'1, rp must then be less than the maximum of the 
boundary temperature for smaller values of p. For 
p; > (16pn4)[m(3n - 3)]-1, the boundary temperature 
is a monotonically increasing function of 1'1 so that 

r dP < n-i).3-3n exp (_ ~ p2) In ""11 32pn4 x 

(~ Px > t(n - 1»). (A14) 
32pn 

Now let us tackle the other term in (A9). For 
paths of class I Ii [Xi - Zi(U)]2 < (16n4)-lp;, and in 
particular 
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for all i = 1 ... 11 and ° SuS {3. Think of Xi' i = .1, 
2,. .. 11, as a set of n points in ordinary three-dimen
sional space, and let S be the set of points contained 
in 11 spheres of radius (211 2)-lpx centered at the points 
Xl' X2 ,. •• X n . Evidently, the various three - dimen
sional trajectories described by Zl(U), Z2(U),· . ·,z,,(u) 
all lie in the set S. We now want to show that S is 
disconnected, that is that S breaks up into at least 
two pieces which have no point in common. The proof 
is by contradiction. If S were connected, the maximum 
distance between any two of the centers Xl ... XII 
would be (n - l}px/n2. But this is impossible since 

(A16) 

for 2:j Xj = 0, which implies that (xj - XJ2 ~ n-1p; 
for at least one j. Therefore S breaks up into two 
disconnected pieces Sl and S2' Next, since each 
trajectory Zi(U) remains in a sphere of radius (4112)-1 Px 
about its starting point Xi' and the spheres which 
define S have twice this radius, it follows that 

(AI7) 

for Zi in Sl and Zj in S2' What we have shown, then, 
is that all paths in class I have the property that the 
particle trajectories split up into two or more clusters 
with no particle in one cluster getting closer than 
(211 2)-lpx to any particle in cluster two. For large Px 
this implies that 'Dn({z}) is very small. To be more 
specific, let Vint be that part of the potential energy 
which connects particles in cluster one with those in 
cluster two. Furthermore, let r(p",) be the maximum 
of I Vintl over all possible decompositions of the 11 
particles into clusters and over all configurations for a 
given clustering, subject to the condition that no 
particles from two different clusters are closer than 
(2112)-lp",. Then it is possible to show that 

(A18) 

for all paths in class I. Equation (AI8) is a direct 
consequence of (A2) and the properties of the classical 
cluster functions. For 11 = 3, one easily sees that 
r(p",) is the maximum of I Vi/Xi - xj)1 for i ¥- j = 
1, 2, 3, with IXi - Xjl > (2112)-lp",. If all potentials 
have a strictly finite range, then r(p",) is clearly 
identically zero for large enough p", and, for potentials 
that fall off exponentially at large distances, r also 
falls off exponentially with Px' 

Finally, we have 

1 dP",/'Dn<{z}) S leflf'(px) - 11 CneflBn f dPxy 

::;: leflf'(Px) - 11 Cne/lBn f dP xy' (AI9) 

and putting everything together gives 

\<{x}1 Un I{R 9x})c.m.\ 

< 11-~A3-3nc ePBn[exp (_ ~ p2) 
n 32~114 x 

+ lefJr(Pf) - II] (A20) 

(Maxwell-Boltzmann statistics), 

for Px sufficiently large and () satisfying (A 7). Now, if 
the potentials fall off fast enough so that lefJr(Px) - 11 
is integrable, which is certainly the case for finite range 
or exponentially falling potentials, then we have 
obtained an integrable bound on 

({x} \ Un{R9x})r.lll., 

and by the dominated convergence theorem, it is 
legal to bring the limit as () --+ 0 inside the integral in 
(2.12). 

It remains to take Bose and Fermi statistics into 
account. In this case one has to consider paths {z} 
starting at {x} but ending not at {RBX} but at {PR9X} = 
{R9Px}, where P is some permutation of coordinates. 
Furthermore the integrand in (A3) is no longer just 
that given by (A2). Let us call the new integrand 'D;. 
For the moment we need to know nothing about 'D; 
other than that it is bounded by C;,e/l B

" , where C~ 
has the same significance as before. Now we divide the 
(3n - 3)-dimensional space of {x}'s into two regions. 
Region A is to be that where 

2: (Px i - xiP ~ (32n4)-1 p;, 

and Region B contains all {x} such that 

2: (Px i - Xi)2 < (32n4)-lp;. 

For e so small that 11 - cos ()I + Isin ()I < (128114)-1, 
it is easy to show that 2: (PRBxi - Xi)2 ~ (64n4)-lp; in 
Region A and 2: (PRBx i - xY < (16n4)-lp;inRegion 
B. When {x} is in A, the path integral is trivially 
bounded by 

f dP'D~ < C~e{JBn).a-3" exp [-(m/128n4B)p;], 

(A2l) 

which follows from (A5) and (A6). Region B can be 
treated as before. Dividing the paths into classes I 
and II as above, the previous bound holds for the 
Class II paths provided only that we replace C n by C~. 
The class I paths again break up into two sets which 
always stay at least a distance (2n2)-1 p", apart. Evi
dently, the permutation P cannot be interchanging 
the coordinates of two particles in different clusters. It 
is an elementary property of the U functions for Fermi 
or Bose statistics that when the particles are broken 
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up into two sets not connected by the permutation P, 
then the integrand 'lJ~ satisfies the same bound (AI9) 
for large distances between clusters as in the case of 
Maxwell-Boltzmann statistics, provided only that we 
again replace Cn by C~. Therefore, the treatment of 
Region B reduces to the case done above. One easily 
sees that (2.13) in the text is valid for Bose and Fermi 
statistics also. 

APPENDIX B 

We are concerned here with the limits of () ~ 0 and 
with infinite volume. Only the case of Maxwell
Boltzmann statistics will be discussed. The extension 
to other statistics along the lines of Appendix A is 
trivial. Defining the sphere L x~ = P; < A2 as in the 
text, let 

(BI) 

where the subscript on the path integral means to 
include only those paths which stay inside a sphere of 
radius A. This is equivalent to putting an infinite 
potential barrier on the surface Px = A, and enforces 
the boundary condition that the wave functions 
vanish on the sphere. We will not bother to prove that 

lim lim IdPRoxx'lJn = lim lim IdPRoxx'lJn 
8->0 A-> 00 A A->O 0-->0 A 

= I dPxx'lJn , (B2) 

since pointwise convergence should be obvious. One 
should, on the other hand, worry somewhat about 
bringing the limits inside the integral in (2.14). The 
proof that this can be done requires only a simple 
modification of the arguments in Appendix A. If 
Px ~ A, then ({x}1 Un I{R8X}>~m. is identically zero. 
(Remember that L (ROXiP = Lxi = p;.) For Px < 
A, breaks the paths into classes IA and IIA which are 
the same as before, except that paths leaving the 
sphere are to be omitted. The contribution of the 
Class IIA paths is now bounded by 

CnefJBn r dPxu < CnePBn r dPxv , (B3) JIlA J II 
since IIA contains fewer paths than II. Similarly the 
IA paths are easily seen to be bounded by 

1 dP el) < lePvcP.) - 11 C efJBnl dP xv n _ n xy 
~ ~ 

::; I ePvcP.) - 11 CnePBn i dP Xii' (B4) 

since again IA is smaller than I. With the same 
assumptions on the potentials as before, we thus have 

an integrable bound on 1({x}1 Un I{Rox})~m.l, which is 
independent of both () and A. Therefore the limits as 
() ---+ 0 and A -- 00 can be brought under the integral 
over {x} in either order. Equation (2.28) may be 
thought of as the result one obtains by taking e -- 0 
first and then A -- 00. Equation (2.51) and most of 
our later work assumes the opposite order, A -- 00 

and then e ~ o. 
APPENDIX C 

This appendix is devoted to the task of evaluating 
the contribution of Fig. 5(b) to b4 by using the small 
angle limit prescription. 

We first sum over the repeated two-body T matrices 
and obtain 

I 
- - 1m (Tr In Sh 

2rr 

= Re Tr O(E - Ho)[Ti2GoTiaGoTi4 

+ Tl22rrio(E - Ho)TLGoTI4 

+ !TI22rriO(E - Ho)Tla2rrio(E - Ho)Ti4]. (CI) 

Here we remind ourselves that diagrams differing by 
a cyclic permutation of T matrices are considered as 
the same diagram in our convention. That is why we 
have the factor! for the last term of (el), to correct 
for over counting. 

Substituting (CI) in (3.1) and performing the E 

integral, we find 

4-~(b4)b 

= -lim fJIdP 
0"'0 

X e-P<cp) Re (pi T;2 Ip") (pili TiaIP"') (p"'l Ti4lp') 

X P(pi - p~2)-lp(pi _ p~'2)-1 

_ !rr2o(p~ _ p~2)o(pi _ p'~2)], (C2) 

where the vectors p~ , p~' are defined in Fig. 6 and 

Ip") = Ip/{P~PaP4)' Iplll) = Ip~'p~p~P4)' 

The algebra of evaluating (C2) is sufficiently 
complicated owing to the energy and momentum 
dependence of the T-matrix elements. We shall 
therefore divide it into three parts: 

(1) The essential step is to use PI' p~, p~' as inde
pendent variables of integration. To make this point 
transparent, we first ignore the structure of the 
T-matrix elements and regard them as constants to 
simplify the algebra. 

(2) Then the general procedure of taking the e -- 0 
limit is clear, and we put in the full energy momentum 
dependence T-matrix elements back. 
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(3) Finally, we compare the result with that obtained 
by using off-shell forward amplitudes. 

Since the z components of the momenta do not 
play any role in our discussion, we shall ignore them. 

1. Constant Tt Assumed 

While particles 2, 3, and 4 appear on the same 
footing, particle 1 is clearly special. Roughly speaking, 
the effect of particles 2, 3, 4 is that of a "self-energy 
correction" to the propagation of particle I. 

Figure 6(b) shows how P2' P3, and P4 are related 
to the momentum transfers PI - p~, p~ - p~l, and 
p~1 - p~. The angle fJ together with the fact that 
pi = p~2 completely determines P2, Pa, and P4 once 
the momentum transfers are given. We have 

P~ = (PI - pn2/4 sin2 (fJI2), 

P; = (p~ - p~')2/4 sin2 (fJI2), (C3) 

p! = (p~1 - p1)2/4 sin2 (eI2). 

In terms of the angles el , fJ2, and fJ 3 defined in Fig. 
6(b), we have 

E(p) = P~ + p~ + P~ + pL (C4) 

p~ + p~ + p! 

= [4 sin 2 (fJI2)]-I[(PI _ p~)2 + (p~ - pt)2 

+ (PI - pt)2 + 2PIP~(1 - cos fJ1) 

+ 2p~p;'(1 - cos fJz) + 2P~lpl(1 - cos fJ 3)], 

where fJ1 + fJ2 + fJ3 = fJ. We can use PI, P~, p~l, fJ1, 
fJ2 , and fJa as variables of integration. In (C2) , the 
Boltzmann factor e-PE(p) is the only factor depending 
on fJ1, fJ 2 , and fJ3 • It is clear from (C4) that, after 
integrating over fJ 1 , fJz, and fJ 3 , the Boltzmann factor 
gives 

(C5) 

where w is symmetric in PI' P~' and p~l. The term with 
principal parts in (C2) is not symmetric in PI' p;, and 
pt. Let us symmetrize it and write the integrand as 

2 

W(PI' P~, ptH(e-PPl p(pi _ p~2)-lp(p~ _ p~12)-1 

+ e-P Pl"2p(p~2 _ p~)-l p(p~2 _ p~12rl 
fl/2 + e-PP1 P(p~12 _ p~rlp(pt2 _ p~2)-1 

- 7T20(p; _ p~2)O(p;2 _ p~12)e-PP12). (C6) 

In view of (C4) , the Boltzmann factor falls off 
rapidly when () is small, and for PI, p~, and p;1 not 
nearly equal. Thus, W(PI' P~, p~l) is negligible except 
for PI RO P~ RO p~/. Let 

and expand the exponentials in (C6) around p~: 

-PP12 
_ -Ph' + (2 -2) ~ -PPl' e - e PI - PI 0 pi e 

+ ~(pz _ p-Z)2..L e-Pih' + O[(p2 _ p-2)3]. 
2 1 1 o(pD2 1 1 

(C8) 

Before substituting (C8) in (C7), we note the algebraic 
identity 

amP(a - br1P(a _ C)-l 

+ bmP(b - cr1p(b - a)-l 

+ cmP(c _ a)-lp(c _ b)-l 

- 7T
2o(a - b)o(b - c)am 

= 1, if m = 2, 

= 0, if m = 0, 1,3,4' . " (C9) 

which can be verified easily. Now we substitute (C8) 
in (C6) and apply (C9) with p~ = a, p~2 = b, p~12 = c. 
We obtain from (C6) 

( 
1/ /II) (1 1 02 

_pp • 
W PI' PI , PI 3 "2 O(p~)2 e 1 

+ O(p; - pi, p~2 - pi, pt2 - P~»). (ClO) 

In the 8 -+ 0 limit, the last term is negligible. Writing 
the first term as i(0210E(p)2)e-pQP), we have 

4-!(b4)b = -fJ J dp ~ OE~:)2 e-P
€(P)(T

t )3, (Cll) 

where (Tt)3 is the T-matrix elements whose P de
pendence we have ignored so far. 

2. Structure of T Included 

As is shown in Fig. 6(b), the vectors Pi' P;, i = 
2, 3, 4, are completely determined by PI, p~ , and pili. 
The two-body T-matrix element 

(PIP21 Tt(E(p) - p~ - p!) Ip~p;) 

depends on PI, p;, ()l' fJ and the two-body off-shell 
energy variable 

E(p) - p~ - p! = pi + pi 
== p~ + V(PI' P~, el )· (CI2) 

We may write 

(PIP21 Tt Ip;p~) = f(pi + p~, PI' p~, fJ1) 

=f(pi; PI' P;, ()I)' (C13) 

It is easy to verify thatfis symmetric in PI and p~ if the 
first argument is held fixed. Similarly, the second 
T-matrix element in eC2) depends on p~ , pt, 82 , fJ 
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and the two-body off-shell energy variable 

€(p) - p~ - P: = pi + P: 
= p~ + v(p~, Pl", (2), 

We have 

(P1P31 Tt Iptp~) = f(p2; p~, pi", ( 2), 

The same arguments show that 

(C14) 

(CIS) 

(p~'p41 Tt Ip{p~) = f(pi; pili, p, ( 3), (C16) 

The product of the T-matrix elements and the Boltz
mann factor, after being integrated over Ol' O2 , and °3 , is a function 

(CI7) 

which is symmetric in the last three variables, similar 
to (CS). Now we symmetrize the integrand of (C2) 
as we did in (C6). All previous arguments leading to 
(CIO) hold, and we obtain, in place of the first term of 
(CIO), 

1 (}2 ( -2 2 112 1112) (CI8) 6 oUii)2 g Pl; Pl , Pl ,Pl . 

This derivative is equivalent to that taken with respect 
to the off-shell energy variable €. Thus, (ell) is 
generalized to read 

3. Evaluation Using Off-Shell Forward Amplitudes 

This is easily done by making the replacement 
(3.13), and keeping the same 'Y) in (CI). A little algebra 
shows 

-(1j27T) 1m (Tr In Sh 

= ! f dp Re (pi G~ - G~3Ip) 
X (pi Ti2lp) (pi TIs Ip) (pi Ti4Ip). (C20) 

Since 

(pi Gg - G~3Ip) = to"[€ - €(p)], (C21) 

we have 

(b')b = 4!,8 f d€e-P«lj27T) 1m (Tr In Sh 

= -4!,8fdP ![02 e-P< (pi Ti2Ip)(p\ Tislp) 
6 o€ 

APPENDIX D 

In this appendix we shall evaluate the contribution 
of Fig. S(c) to b4 using the small angle limit prescrip
tion. Let us first write down their contribution to the 
trace of the logarithm: 

(D!) 

where ~o == 27Tio(€ - Ho), and the labels (1)-(7) 
identify the terms with diagrams in Fig. S(c). We can 
simplify this expression by taking advantage of various 
symmetries such as time reversal, space inversion, and 
particle label permutation under which the trace is 
unchanged. We obtain 

1 
- - 1m (Tr In S)() 

27T 

= ReTro(€ - Ho) 

{ 
t t t 

X TsiPj€ - Ho)T2S(Pj€ - Ho)Tl2 

+ TJs(Pj€ - Ho)[Ti2(Pj€ - Ho)T!4 

+ T!iPj€ - Ho)TI2] 

+ 7T2TJao(€ - Ho)Ti20(€ - Ho)Tt4}' (D2) 

For clarity, we shall again divide the work into three 
steps: 

(1) Assume all the T-matrix elements in (D2) are 
constants, and factor them out. Then the algebra will 
be simple and the essential features of the approach 
will be clear. 

(2) Then we put back in the T-matrix elements with 
their full energy and momentum dependence. 

(3) Finally, we shall obtain the same result by 
using off-shell forward amplitudes. 

These diagrams possess less symmetries than those 
in Fig. S(b) and are more complicated. The structure is 
very different. It is therefore not surprising that the 
algebra here will appear quite different from that in 
Appendix C. 

1. Constant T Assumed 

X (pi Ti2 'P>l=dP)' 
which is the same as (CI9). 

(C22) Again, the z components of the momenta play no 
role in the discussion and will be ignored. The geom
etry is depicted in Fig. 7(a). The vector k is defined 
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as 
k = PI + P2 = -P3 - P4. (D3) 

We shall regard PI, P4, and k as independent variables 
of integration. By geometry, we have 

p~ = (k - PI)2 = p~ + k2 + 2kpi cos CPl' 

p~ = (-k - P4)2 = p~ + k2 + 2kp4 cos CP4' (D4) 

E(p) = 2(pi + P: + k2 + kpi cos CPI + kp4 cos CP4)· 

We further define 

d1 = 2(k' - k) • PI = 2kpI[COS CPl - cos (CPl + 0)], 

di = 2(k - k') . pi = 2kpI[COS CPI - cos (CPI - 0)], 

d4 = 2(k - k')· P4 = 2kp4[COS CP4 - cos (CP4 - 0)], 

d~ = 2(k' - k) • p~ = 2kp4[COS CP4 - cos (CP4 + 0)]. 

(DS) 

Substituting (D2) in (3.1) and integrating over E, we 
obtain 

(b4)c = -4!f3 J dpA, (D6) 

A = (Tt)3[P(1/d~)P(1/dl) + P(1/d4)P(1/dl)]e-Pdp) 

= 2(Tt)3P{l/d4)P(1/dl)e-Pdp). (07) 

We have made use of the identity (C9) with m = 0, 
i.e. , 

P(x + yrl(Px-1 + Py-l) + 7T
2b(x)b(y) 

= Px-1py-\ (D8) 

and have changed CP4 to -CP4 in d~, in arriving at (D7). 
Let us make the change of variables 

and define 

CPI ---+ CPI - 0/2, 

CP4 ---+ CP4 + 0/2 

x± = P1k cos (CPI ± 0/2), 

(09) 

y± = P4k cos (CP4 ± 0/2). (010) 
Then 

-2k· PI = x-, -2k'· PI = x+, 
2k· P4 = y+, 2k' . P4 = y-, (Dll) 

E(p) = 2(p~ + P; + k2
) + x- + y+. 

It then follows from (07) that, under the CPI' CP4 
integration, 

A = 2e-2P (V1 2+P.2+k 2) 

x e-P("'-+u+)P(x- _ X+)-lp(y+ _ y-)-l 
-p",- -p",+ -py+ -Py-

_ 1 -2P(P12+P,,+k2) p e - e P e - e 
- 2 e 

x- - x+ y+ - y-

= tf32e-2P(V12+v.2+k2)e-P("'-+"+) 

(D12) 

where we have made use of the fact that x±, y± ---+ 

x'f, y'f when we change CPI , CP4 to - CPI , - CP4. The small 
angle limit 0 ---+ ° is now transparent. As 0 ---+ 0, 
x+ ---+ X-, y+ ---+ r. Equation (DI2) becomes, in this 
limit, simply 

~L e-PE(p) 
2 OE(p)2 ' 

(D13) 

which can be substituted in (D6) to obtain (b4)c. 
The essential feature of the above procedure is thus to 
write the integrand as a function of CPI and CP4' which 
appear to be the convenient variables for the energy 
denominators, so that the 0 ---+ ° limit becomes 
transparent. 

2. Variable T-Matrix Elements 

When one includes the energy and momentum 
dependence of the T-matrix elements, the algebra 
becomes very involved. We shall still use k, PI, P4' 
CPI' and CP4 as independent variables. The e ---+ ° limit 
will be clear as a result of analyzing the CPI' CP4 de
pendence of the T-matrix elements. This CPI' CP4 
dependence of T-matrix elements comes from (a) 
their dependence on the total energy E(p) which 
depends on the angles via (04), and (b) the angular 
dependence of the initial and final momenta specifying 
these matrix elements. 

As will be shown, the effect of the singulardenomina
tors is to differentiate the T-matrix elements with 
respect to the angles. Owing to the symmetry proper
ties of the T-matrix elements, these derivatives with 
respect to angles can be conveniently expressed as 
those with respect to E(p). The angular dependence 
through (b) turns out to have no effect in the 0 ---+ ° 
limit. 

Let us examine the role of the energy variable E(p) 
first. For the first and last term in (02), T12' TJa, Tl4' 
regarded as two-body T matrices, have their off-shell 
energy variables evaluated at 

E(p) = pi - P: = pi + p~ 
E(p) - pi - p! = p~ + p~ 
E(p) - pi - p~ = pi + pi 

for T1
t
2 , 

for T:3 , 

t for T a4 . 

(D14) 

On the other hand, for the other two terms in (02), 
while na and TJ4 still have the same energy variables 
given by (014), Ti2 has its energy variable evaluated 
at 

E(p) - p~'2 - P; = pi + p~ + (p~ _ p~'2). (DI5) 

We shall do the problem in two steps. In Step I, we 
ignore the p~ - p~2 term in (DI5) and complete the 
calculation. In Step II, we correct the error. 
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Step I: Similar to (D6), we obtain from (D2) 

where 

u( rpl, rp4) = (P3P41 Tt Ip~p~> (p2p~1 Tt Ip~p~> 
x (plp'~1 Tt Ip;p~> e- f3«p), 

V(rpl, rp4) = (P2P31 Tt IP~P;'>(PIP~I Tt Ip{p~> 
x (p~'p41 Tt Ip~p~)e-fJ'(p). (D17) 

Of course, besides rpl and rp4, U and v depend on 
e, pi, p! , and P, which are suppressed to simplify the 
notation. Since d~ ---+ d4 when we change rp4 to -rp4' 

terms of these labels, this term is 

f d3q d3q' d3q" 
(217')3 (217')3 ... (217')3 V(k - q) 

x V(q - q') ... V(q" - k') 

x [p~ + pi - 2q2 - pi - p! - 2q . (p~ - Pl)]-1 

X [p~ + pi - 2q2 - p~ - p! - 2q' . (p~ - Pl)t1 

X ... 

X [p~ + p~ - 2q,,2 - p~ - p! - 2q" • (p~ - Pl)t1
• 

(D22) 

It is a function of 

according to (D5) and (D6) can be written as and 

P; + p~, 2k· (p~ - PI) = y+ + x-, 

2k' . (p~ - PI) = Y- + x+, 

Again, we make the change of variables (D9) and use 
the variables x±, y± defined by (D 11). We then have 

A = [U(rpl - e12, -rp4 - (12) 

+ vC rpl - e12, rp4 + eI2)] 

x p P 1 . (D19) 
x- - x+ y+ - y-

Before attempting the step corresponding to (DI2), we 
have to examine the angular dependence of u and v. 

Consider u, defined by (D17). The first matrix 
element [see Fig. 7(b)] is a function ofk2 ,p! , -k· p~ = 
- y+, - k • p~ = - y- and the energy variable 
pi + p!. Here - k is the total momentum of the two 
particles. We can express the angular dependence of 
this matrix element as 

Since /34 is symmetric in the last two variables, it is 
unchanged under the change of variable rp4 ---+ -rp4 
if the first argument is kept fixed. 

Similarly, the third matrix element [see Fig. 7(b)] in 
u can be written as 

( "1 Tt I ") f ( 2 + 2. + -) PIP2 PIP2 = 12 PI P2, X ,x . (D21) 

We note that (D20) depends on rp4 and (D21) on rp1' 
but the second matrix element of u depends on both 
rpl and rp4' and is more complicated. We shaH param
etrize it the following way. Label a general perturba
tion term for Tri3 as shown in Fig. 7(c). Written in 

(p~ - Pl)2 = p! + p~ - 2PIP4 cos (rpl - rp4)' 

Therefore, we have 

e-(J(p) (p2p~1 Ttl p~p~) 

= fdp~ + p~; x- + y+, x+ + Y-, cos (rpl - rp4» , 

(D23) 

where we have included the Boltzmann factor in h3' 
Equations (D20), (D21), and (D23) summarize the 

angular dependence of U(rpl - e12, -rp4 - eI2). The 
same analysis applies to v( rpl - e 12, rp4 + e 12) as well. 
The result is 

( "1 Tt I ") f ( 2 + 2. + -) PIP2 PIP2 = 12 PI P2, X , X , 

'III I Tt I ") f: ( 2 + 2. - +) \P3 P4 P3P4 = 34 P3 P4' Y , Y , 

(P2P31 Tt Ip~p;'> e- f3«p) 

(D24) 

(D25) 

= f23(P~ + p~; x- + y+, x+ + Y-, cos (rpl + rp4»' 

(D26) 

These equations summarize the angular dependence 
of V(rp1 - e12, rp4 + eI2). The functions h2, h3, /34 
are all symmetric in their second and third arguments 
by the space-time inversion symmetry of the T 
matrix. It is clear that 

U(r?1 - 012, -rp4 - (12) + V(rp1 - 012, rp4 + (12) 

is unchanged under the variable changes rpl ---+ -rp1 
and rp4 ---+ - rp4 if, in j;j' the first arguments are held 
fixed. Thus the asymmetry in rp1 and in rp4 comes in 
only through the first arguments of these functions via 

p~ = (k - Pl)2 = k2 + pi + x-, 

pi = (-k - P4)2 = k 2 + p~ + y+. (D27) 
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We now substitute (D20)-(D26) in (DI9) and obtain 

lim A = lim 2f12(X-)f23(X- + Y+)f3iY+) 
0-+0 0-+0 

x P(x- - X+)-lP(y+ _ y-)-l 

1 a2 

= 4: axay 2fI2(X)f23(X + y)f3iy), (D28) 

where only the x±, y± dependence through the energy 
variables, i.e., through the first arguments of /12' /23' 
/34' are kept, and x, yare the () ---+ 0 limits of x±, y±. 
We have thus completed Step I. 

Step II: Now we proceed to include the fact that 
the T12 in the second and the third terms of (D2) has 
its energy variable given by (DIS) instead of (DI4), 
i.e., a difference of 

p; _ p~'2 = y+ _ y-. 

The term we have missed in A is 

{}.A = TL(p~ + p;)[Ti2(pi + p~ + pi - p~'2) 
- Ti2(pi + pmT;ip; + p~) 
X P(d1 + d4r1P(1jd4)e-PE(p) 

(D29) 

= f23(X- + y+)[j~2(X- + y+ - y-) - fd x-)] 

X f34(Y+)P(x- + y+ - x+ - y-r1 

X P(y+ - y-)-l. (D30) 

We have utilized our knowledge about the T-matrix 
elements summarized in (D20)-(D26) and have 
suppressed all irrelevant variables. Now we expand 

f12(X- + y+ - y-) - f12(X-) 

= fi2(X-)(Y+ - r) + V~2(X-)(Y+ - y-)2 

+ O[(y+ - y-)3]. (D31) 

Substituting (D31) in (D30), the () -+ 0 limit can be 
taken readily. We find 

lim {}.A = 1.(f~2f2d34 + fld2d~4 + f~d2d~4 
0-+0 

+ fid~d34 + f12f~d~4)' (D32) 

Step II is then completed. 

I t is now a matter of counting terms to show that the 
sum of (D32) and (028) is 

lim (A + {}'A) = - 2 e-P< (pi Tli€) Ip) (pi T!3Ip) 1 [a2 

0-+0 2 a€ 

X (pi Ti2(€) ,p)l~e(p)' 
(b 4)c = -lim 4!.sfdP(A + {}.A). 

0-+0 
(D33) 

3. Evaluation by Using Off-Shell Amplitudes 

This is done easily by the replacement (3.13) and 
keeps the same 'Y) throughout in (Dl). After a little 
algebra, (Dl) becomes 

-(1j21T) 1m (Tr In S)c 

= f dp Re (pi G~ - G~t Ip) 

X (pi TJ4Ip)(pl TJ3Ip)(pl T 1
t
2 1p) 

= f dp 1. Re o"[€ - €(p)] (pi T;4 Ip) 

X (pi TL Ip)(pi Ti2Ip). (D34) 

The forward T-matrix elements depend on the oft'
shell energy variable €. Thus, we have 

Equation (D35) is, of course, the same as (D33). 
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The .rel.ation~hip between the c?uplings of the non-Abel.ian gauge field and the internal holonomy 
gro~1? IS Inve~tl,gated on the classIcal level, under th~ reqUirements of full local gauge invariance and 
poslt~ve defimteness of the gau~e fie~d's energy d~nsl.ty. For the free gauge field it is found that each 
solutIOn to the gauge field equatIOn .wlth self-couplIng IS associated with a simple compact internal hoI on
omy gro.up. W~~n the gauge field IS coupled to other multiplet fields, an internal symmetry group is 
p.resent In addItIOn to the holonomy group .le. In this case the internal holonomy group must also be 
sImp.le and compac.t. In ~ddi~ion, homogeneity and isotropy of event space for closed systems of fields 
reqUire that .le be IdentIcal In group str~cture with either the. symmetry group or a subgroup of the 
symmetry group.and that a~1 the fi~ld equatIOns caI?- be decoupled Into sets of equations acting on multiplet 
fields transf~rmIng. under meducl?le representatIOns of .le. Thus, in local gauge theory, multiplet fields 
can be classIfied WIth respect to SImple and compact internal holonomy groups. Some comments are 
offered on the relationship between internal holonomy and symmetry groups. 

I. INTRODUCTION 

In local gauge theory the geometric properties of the 
gauge field and potentials allow a Lie group, the in
ternal holonomy group :re, to be assigned to each 
analytic solution to the gauge field equation. l The use 
of the ordinary holonomy group in studies of solutions 
to the Einstein field equation2- 4 suggests that the 
internal holonomy group will be of interest in con
sidering properties of solutions to the gauge field 
equation. To be sure, this group has proven a useful 
tool in investigating the gauge field's ability to carry 
internal charge,5 the properties of gauge fields with 
spherical6 and plane symmetry, 7 and the electro
magnetic part of the free gauge field. 8 Compactness of 
:re also insures the positive definiteness of the gauge 
field's energy density.9 Combined with the physical 
criteria of positive definiteness of the gauge field's 
energy density, :re has also proven useful in establishing 
conditions for nonexistence theorems on solutions to 
the free gauge field equation10 and in establishing the 
precise nature of any internal charge carried by the 
gauge field,u Indeed, it is apparent that there must be 
an intimate connection between the possible internal 
holonomy groups and the physical properties of gauge 
fields. In order to determine more precisely this con
nection, the present paper is concerned with the 
relationship between the gauge field's couplings and 
internal holonomy groups, under the restrictions of 
full local gauge invariance and the positive definiteness 
of its energy density. 

The investigation begins with a discussion of the 
concept of positive definiteness of the free (self
coupled) gauge field's energy density for classes of 
solutions to the gauge field equation and of the 
consequences of this restriction upon the Lie algebraic 
structure of the fields, i.e., the structure of.re. Keeping 
in mind that no internal symmetry group is present in 

the free field case, we consider the structure and 
decomposition of the free gauge field equation. 

When the gauge field is coupled to other multiplet 
fields, it is necessary to introduce an internal metric in 
order to define a gauge invariant Lagrangian for the 
system of fields. This automatically defines an internal 
symmetry group. Of interest is how theories of the 
free gauge field fit into theories involving coupling 
between the gauge field and other multiplet fields 
defined by internal symmetry groups. A clarification 
of this point should be desirable as a basis for deter
mining how symmetry breaking can come about in a 
locally gauge invariant theory, particularly if the 
asymptotic identification is employed to define the 
electromagnetic part of the gauge field. 8 The principle 
of homogeneity and isotropy of event space for closed 
systems serves here to clarify the relationship between 
the holonomy and symmetry groups. It also clarifies 
the connection between the classification of gauge 
fields given here via internal holonomy groups, and 
previous classifications of gauge fields coupled to 
other multiplet fields in terms of internal symmetry 
groups, based upon generalizations of the so-called 
Yang-Mills trick.l2•13 

In the following section some of the properties of 
the internal holonomy group employed below are 
briefly reviewed.l4 Full local gauge invariance is 
assumed throughout and the development is on the 
classical level. No quantized systems are considered. 
The event space is taken as Minkowskian, with XK, 

K = 0, 1,2, 3, standing for the event coordinates and 
OK for ajax". 

II. THE INTERNAL GEOMETRY 

In local gauge theory the particle multiplet fields are 
at each event defined with respect to a distinct n
dimensional internal space. The collection of bases 

716 
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over event space is referred to as the internal base or 
gauge.10 Under coordinate-dependent internal base 
transformations, covariant internal vectors, linear 
internal operators, and the n x n matrix fields of the 
gauge potential transform, respectively, according to 
the rules 

functions of the event coordinates. The following dis
cussion is in terms of such a basis. 

III. POSITIVE DEFINITENESS AND Je 

The action principle applied to the gauge field 
Lagrangian17 

1jJ' = S-I1p, P' = S-IPS, r'l' = S-lrl'S - S-I0I'S, LF = -iTr~I<).~I(;' (8) 

(1) yields the free gauge field equation 

The transformation property of the gauge potential 
allows the introduction of the gauge covariant deriv
atives 

VI'1jJ = 01'1jJ - rl'1jJ, VI'P = 0I'P - [rl"p], (2) 

which transform under (1) in the same manner as the 
quantities upon which they operate. The gauge field is 
defined in terms of the gauge potential by 

~I'v = 0l'rv - 0vrl' - [rl" rv] (3) 

and transforms under (1) as a linear internal operator. 
By virtue of its definition, it also satisfies identically 
the "Bianchi" identity 

VI'~d + V;'~I'I< + VK~).I' = o. (4) 

The internal holonomy group is defined in terms of 
the equivalence transport of internal vectors. The in
ternal vector 1jJ(xl< + dxl<) is defined to be equivalent 
to 1jJ(xlC ) provided that the gauge-invariant condition 

dxlCV 1(1jJ = ° (5) 

is satisfied at x". In this case 1p(x" + dx") may be 
considered the result of the equivalence transport of 
1jJ(x") along dxl( to xl( + dx". 

The element Ht(x") of .re(xl<) affects through the 
transformation 

(6) 

the equivalence transport of covariant internal vectors 
about the closed loop t in event space originating at 
xl<. 

Consider the potentials to be analytic functions of 
the event coordinates. At each event the gauge field 
and its covariant derivatives span the Lie algebra 
C of .re. One can always choose an internal base such 
that the linearly independent generators of Je(xl() , 
L(xl()m, m = 1,'" ,p, are numerically the same at 
all events.1 In addition, the internal base can be chosen 
such that r I( E c.1G This insures the existence of the 
expansions 

rl( = bl(m L m, ~lC;' = b,,;.m L m , 

V I' ... V "~I(;' = bK)..v ... l'm L m, (7) 

where OkLm=O, and the bK
m , bl(;.m, etc., are real 

Vv~I'V = O. (9) 

Note that (8) and (9) are automatically invariant 
under invertible transformations of the type (1), and 
thus that the notion of an internal symmetry group is 
not involved in discussions of properties of the free 
gauge field. Is The criterion of positive definiteness is 
motivated by considering the initial value problem for 
(9) at XO = O. 

The constraint equation, the zero component of (9), 
sets restrictions on the initial values that the ~jk and 
rj,j, k = 1,2,3, may assume on the surface XO = O. 
Consider a gauge in which r ° = 0 at X O = O. It is 
easily seen that such a gauge, consistent with (7), 
always exists. The constraint equation reduces to 

(10) 
where 

~Oj = oor j • 

Given the r j , (10) is then a linear differential equation 
for ~Oj, and, in principle, solutions can easily be found 
at XO = 0.19 

Using the identity 

VI"" V'p(V'oVy - V'yV'o)Vb·· . V'IZ~I(). 

= VI"" V'P[Vb' .. V'IZ~I(;" ~Oy], 

we can permute the time covariant derivatives in 

V Jt ••• Vv~d 

with the spatial ones and eliminate them, using either 
(4) or (9). Since in the gauge r ° = 0 the time covariant 
derivative is just the partial time derivative, it is clear 
that an analytic solution to (10) determines a solution 
to (9), at least in the neighborhood of the surface 
XO = O. Therefore, one should expect a large number 
of possible solutions to (9), corresponding to the large 
number of initial configurations of the gauge field. 

The gauge invariant Yang-Mills energy-momentum 
tensor density is 

T lC ). = - Tr (~I(I'~/ + tgKAcppAlY). 

It is a generalization of that used in electromagnetic 
theory, and is determined in the usual fashion from the 
free Lagrangian (8) by using Noether's theorem. In 
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the basis (7), the energy density takes the form (14) requires 

rOO = -tlmn(I bOimbot + t ~ bi/cmbJ/cn) , (11) 
J 31e 

where 

'mn = Tr LmLn 

is a tensor in the group space of Je. 
In a particular solution to the gauge field equation, 

not all Lie algebraic components of cp,,). need con
tribute to (11), since the gauge fields by themselves 
need not span L. However, it is clear from the above 
discussion that one can always construct a solution to 
the field equation such that the expansion coefficients 
b,,). m with respect to any desired generator Lm are 
nonvanishing. The bK ). m are real since CPd belongs to 
the real Lie algebra of Je. Since lmn is symmetric, the 
energy density can be real for the whole class of solu
tions for a given Je if and only if lmn is also real. But 
then Imn may be placed in diagonal form by a real 
algebra base transformation. It follows that the energy 
density will be positive definite for the class of solu
tions with a given Je if and only if lmn is a negative 
definite tensor in the group space of Je. 

The structure constants of Je are defined through 
the commutation relations 

(12) 
The quantity 

fmnp = Tr [Lm , LnlL1' = cmn
q 

lqp (13) 

is totally antisymmetric, since the trace of any com
mutator vanishes. The negative definiteness of 'mn 

allows an "orthogonal" algebra basis to be constructed 
in the sense that 

lmn = -t5mn , 
or in which 

C P--j, mn - mnp· (14) 

Thus, if the energy density of the gauge field is positive 
definite, there exists an algebra base in which the 
structure constants of Je can be considered as totally 
anti symmetric in their group space indices. .. 

Je may be written as the direct product ?f ItS. tn
variant subgroups. Construct for the Invanant 
subgroup an "orthogonal" set of generators, and con
struct the remaining generators of Je from the orthog
onal complement of the subspace spanned by them. 
This can always be done. Let the indices m, n, and p 
refer to generators ofthe invariant subgroup and t and 
s to any of the remaining generators of Je. Then, by 
definition, 

[Lt, Lml = etm n Ln , [Lm' Lnl = cmnP L1' , 

since ctm
S = cmnt = O. However, consistency with 

It follows that if the energy density of the gauge field 
is positive definite for the class of solutions with a 
given Je, then Je may in its most general form be 
expressed as a direct product of an Abelian group 
e, its center, and simple groups :ItT' The direct prod
uct of simple groups, of course, constitutes a semi
simple group, denoted here by:JL 

Je is a connected Lie group, each closed loop t 
defining a t~ansformation of Je may be continuously 
shrunk to a point. All of its transformations may be 
expressed in the form 

Ht(x") = exp [1]ix,,)mLml, (16) 

where the 1]t(x")m are the group parameters of Je 
defining the equivalence transport of internal vectors 
about some closed loop t in event space originating at 
x". It follows that the adjoint and linear adjoint 
groups of Je, defined by all possible similarity trans
formations on the elements of Je and L of the form 
H(H{.H(-l and HtLmHt-r, respectively, are isomor
phic. But they are not necessarily isomorphic to Je 
itself; 

H1HtH1-l = H 2HtH 2-1 

for a1l H( if the product H1-l H2 commutes with all 
transformations of Je, i.e., if Je has a center.20 How
ever, the adjoint and linear adjoint groups are iso
morphic to :It. 

The generators of the linear adjoint group are the 
structure constants of Je. From the anti symmetry of 
fmnp and (13) it follows that 

cmnP /pq + cm/lpn = O. (17) 

Thus I is invariant under all transformations of the 
linear ;djoint group. Let Wm and vm be any two vectors 
in the Lie algebra space of Je, the space in which the 
linear adjoint group operates, and let w'm and v'm be 
the vectors resulting from them under any transforma
tion of this group. It follows from (17) that 

v'r)mnw'n = vmlmnwn· 

Thus, there exists a definite scalar product in the 
group space of Je, and the linear adjoint group of Je 
is compact. 21 But the latter is isomorphic to :It. Hence, 
positive definiteness implies that Je is a direct pr?duct 
of an Abelian group, its center, and compact SImple 
groups. 

IV. POSITIVE DEFINITENESS AND THE FREE 
GAUGE FIELD 

The Lie algebra of Je is the sum of the Lie algebras of 
each of its invariant subgroups. Using the basis (7) 
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and taking into account (15), one can write 

Tep,,;, = 0" Tr;, _ 0;, Tr" - [Tr", Tr,d, 

TV llepK;' = Oil T cPK). - [Til' T ep,,;,], 

and also 

where the left superscript 'T refers to the parts of 
r J(' eprc).' and V,.CPrc). belonging, to the Lie algebra of 
:RT and the left superscript c refers to those parts 
belonging to the Lie algebra of e. 

Due to the linear independence of the generators of 
Je, the free gauge field equation and Bianchi identity 
decouple into the 'T sets of uncoupled equations 

TVllep"ll = 0, TVllep,,;,. + TV;"cp/l" + TV"ep;"/l = 0, 

while in addition the <epl().. satisfy Maxwell's equations. 
For a theory in which there is free gauge field and 

nothing else, the <cP,,;,. are of no interest. One is inter
ested in localized solutions to the gauge field equation, 
blobs of free gauge field energy density which may 
interact with one another. The ccp,,;, cannot participate 
in the self-interaction of the gauge field. In this case it 
should be sufficient to consider only gauge fields with 
simple and compact Je.22 

In the free field case,the nature of the internal space 
is not of interest, the field equations may be expressed 
solely in terms of the Lie algebraic components of the 
gauge fields and potentials, the b" m and b,,;, m. Of 
interest is whether in a situation in which the gauge 
field is coupled to other particle multiplet fields a 
similar decoupling of field equations can be made 
with respect to the irreducible representations of simple 
and compact internal holonomy groups in internal 
space. 

V. POSITIVE DEFINITENESS AND COUPLED 
FIELDS 

When the gauge field is coupled to other multiplet 
fields, the energy density of the gauge field itself must 
still be positive definite for any class of solutions with 
a given Je. It is clear that this condition is sufficient to 
insure that also in the coupled case Je can at most be 
the direct product of an Abelian group e, its center, 
and compact simple groups :RT • For definiteness, the 
gauge field in the following is considered coupled to a 
Dirac multiplet field. The coupling is introduced by 
replacing in the free spinor Lagrangian all partial 
derivatives by their gauge invariant counterparts, i.e., 
through the generalized principle of minimal cou
pling~2 .13,23 It will be clear, however, that the results 
below will apply equally well to any gauge invariant 

coupling between the gauge field and arbitrary 
multiplet fields. 

Let 'I/l(x")a, a = 1, ... ,n, (spinor indices sup
pressed)24 denote the Dirac multiplet field in question. 
In order to construct a free spinor Lagrangian in
variant under internal base transformations, one 
needs an internal (hybrid) metric. Let gab be such a 
metric, transforming under internal base transforma
tions according to the rule (in component notation) 

a SI1 ga'b' = Sa,gab 0" 

where S~, is the complex conjugate of S~, and where 
ga'b' denotes the components of gab in the new internal 
base. The Lagrangian for the closed system of inter
acting fields can be expressed in the form 

LT = -ti[¥iay/lgabV/l'l/lb - (V/l¥ia)y"gab'l/lb] 

- M¥iagab'l/lb - LF , (18) 
where25 

V" 'I/lb = (o"bg - r "bC)!Pc> 

and where ¥ia denotes the Dirac adjoint spinor "Payo. 
Note that no internal metric is involved in the ex
pression for L F , [(8)]. 

The representation of Je in internal space is its self
representation, which may be reducible. The principle 
problem of this section is to determine the structure 
of the "interaction" or coupling in the Lagrangian (18) 
and resulting field equations with respect to the sub
spaces in the internal space transforming invariantly 
under the self-representations of the internal holon
omy group and also with respect to the compact 
simple groups :RT. It is resolved by invoking the prin
ciple that the event space must be gauge-invariantly 
homogeneous and isotropic with respect to an arbi
trary displacement of the closed system of fields. 

The condition of gauge-invariant homogeneity and 
isotropy of space is satisfied if, at each and every 
event when each internal multiplet field is equivalence
displaced along an arbitrary line increment dx" (line 
increments emanating" from different events being 
parallel), the total Lagrangian remains invariant. 
The equivalence instead of the ordinary displacement 
is required from local gauge invariance, since at each 
event the multiplet fields are defined with respect to a 
distinct internal base. In making the displacement, it is 
necessary to drag along with the fields the internal base 
used. The internal metric is not displaced, however, 
since it is not a dynamical field. 

The gauge field and potentials are included as part of 
the closed system of fields. It is necessary, therefore, 
to define the equivalence transport of the gauge 
potential. This is done by requiring that the equiv
alence displaced field cP~v be defined in terms of the 
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displaced potentials r~ according to (3). Since by 
definition 

cP~V = cP/lV - dx"cr" , cP/lv], (19) 

one can easily verify that this condition requires the 
definition 

(20) 

Using the definitions (5), (19), and (20) for the 
equivalence transport of fields along dX', one finds 
that the Lagrangian for the closed system of fields will 
remain invariant provided that the internal metric 
satisfies the condition 

i.e., that 
V'/lgab = 0. 

Geometrically, this means that the same internal 
metric must be employed at each event. It follows from 
(6) that gab must be invariant under all transformations 
of Je, that is. 

(21) 

Hence Je must be identical to or a subgroup of the 
group of gauge transformations which leave the internal 
metric invariant; Je is identical to or a subgroup of the 
internal symmetry group.26 

Since ~ is compact, its self-representation in the 
internal space may be taken to be unitary. Then there 
exists an invariant bilinear form 

eahab~b , 

where ea and ~b are internal vectors, ~b is the complex 
conjugate of ~b' and where hab is a positive-definite 
Hermitian tensor in internal space, the holonomy 
metric. The representation of ~ in internal space is 
then completely reducible. The internal space may be 
written as the sum of orthogonal (with respect to 
hab) invariant subspaces, each transforming under an 
irreducible representation of ~ in internal space. Of 
importance is whether these subspaces are also orthog
onal with respect to the internal metric gab appearing 
in (18). If so, only the components of the Dirac 
multiplet field lying in the same irreducible subspace 
are coupled by the non-Abelian gauge field in the 
Lagrangian (18). 

The nonsingular linear internal operator A defined 
by 

satisfies 
AR - RA = 0, 

where R is any transformation of~. The eigenvectors 
of A with common eigenvalue then form invariant 

subspaces under the unitary transformations of :R, 
and the different invariant subspaces are orthogonal 
with respect to the holonomy metric. From Schurr's 
lemma it follows that an internal base can be chosen 
such that A has diagonal form. Without loss of gen
erality, the base can be chosen such that 

hab = f>ab· 

Let these irreducible invariant subspaces in internal 
space be labeled by la. Then gab is proportional to 
hab in each fa.. Thus the subspaces transforming under 
the irreducible representations of ~ in internal space 
are orthogonal with respect to both the holonomy 
metric and the metric defining the internal symmetry 
group gab. 

The generators of the center of Je commute among 
themselves and with all transformations of ~. There
fore, it is also possible to decompose the internal 
space into invariant orthogonal subspaces trans
forming irreducibly under ~, where in each of these 
subspaces, say la" the generators of e are multiples 
of the identity operator. Commuting linear operators 
have simultaneous eigenvectors. 

The irreducible subspaces la' so defined must coin
cide with the fa defined above by the diagonal form of 
A, i.e., A must commute with the transformations of 
e; for in the opposite situation at least two irreducible 
subspaces would be required to have a nontrivial 
intersection, leading to a contradiction. The fa. and 
la' were chosen to be irreducible. 

Since the transformations of e commute with A and 
leave invariant the metric gab, they also leave invariant 
hab, which is definite in each fa . It follows that if Je has 
a center, then the center of Je is also a compact group. 
Then the irreducible invariant subspaces transforming 
under irreducible representations of Je, coinciding 
with those of ~, are orthogonal with respect to the 
internal metric. This result would hold, for example, 
even if gab were indefinite. 

Suppose the procedure for decomposing the internal 
space into the sum of irreducible subspaces (under 
Je) has been carried out. Then in the basis (7) the 
L m , the r Ie' and the epIC;' must have a block diagonal 
form with respect to the fa. Furthermore, one has 

1p(rJ.)~iibLmbC ()({J)c = 0, 

where 1p( IX) and (){fJ) are, respectively, internal vectors 
belonging to the irreducible subspaces la and f p • 

Therefore, the Lagrangian (I8) may be simplified to 

LT = .2 L{IX)D + L(a)F' 
a 

(22) 



                                                                                                                                    

GAUGE FIELDS WITH POSITIVE-DEFINITE ENERGY DENSITY 721 

where 

L(IX)D = -ii[tP(IX)aY'tbV"tp(O:)b 

and where 

- (V!'Vi(IX)o)y"g"°tp(IX)/J] - MVi(IX)tigtibtp(IX)/J 

(23) 

V!'tp(iX)b = (a"b~ - f'(iX)"bC)tp(iX)c. 

The remaining problem is to clarify the relationship 
between the irreducible self-representations of Je and 
those of the :Rr • The self-representations of any :Rr 

may be broken down into irreducible representations 
in the internal space, and all these representations 
must be faithful. The field equation 

J(iXt = V;.4>(o:y\ 
where 

J(OC),\C = iip(oc)tiY"tp(OC)bgiiC 

is the external source current, and the Bianchi identity 
(4) may be looked upon from two points of view, 
either in terms of their Lie algebraic components or in 
terms of their matrix elements in internal space. 
Consistency requires faithful irreducible representa
tions of each :RT. 

Suppose the subspaces transforming under irre
ducible representations of a particular group, say :R1 , 

have been identified. The matrices representing the 
generators of this subgroup must be in block diagonal 
form with respect to these invariant subspaces. The 
generators of the other subgroups commute with those 
of :R1 , and their eigenvectors can be used to label 
the subspaces invariant under :Rl (not necessarily 
uniquely). The subspaces so labeled must coincide for 
all the generators of each ;RT with T > I, since the sub
spaces are irreducible. Otherwise one would have a 
nonnull intersection of two irreducible subspaces, itself 
an invariant subspace, leading to a contradiction. This 
means that the matrices representing the generators of 
the groups :RT with T > I must be multiples of the 
identity operator in each of the invariant subspaces. 
However, since each representation must be faithful, 
this requires that, in the subspaces transforming under 
irreducible representations of :R1, the matrices repre
senting the generators of each :RT with T > I all 
vanish. Hence the irreducible self-representations of 
:R coincide with those of an :RT . The self-representation 
of :R is constructed by taking the direct sum of irre
ducible self-representations of simple compact holon
omy groups in the internal space. The subspaces fa 

are those transforming under irreducible representa
tions of these groups. 

The internal holonomy group is further restricted by 
considering the nature of the possible interactions and 

conserved charges generated by the components of 
eep,,;., belonging to the Lie algebra of the center of 
Je. Such components satisfy Maxwell's equations. 
Since in each fa: the generators of e are multiples of the 
identity operator, all components of the external 
multiplet field in fa. have equal weight in contributing 
to the external source current 

j(OC)"m = Tr cL(oc)J(oc)", eL Eel:. 

Therefore, all the particles represented by the different 
components of "1'( IX) can be expected to have long-range 
repulsive Coulomb-like interactions. Such a situation 
would be in conflict with experimental data, the 
interaction being the same as that which would be 
expected to arise due to a baryon number field and 
associated conservation law.27 Thus the center of Je 
must be trivial. 

Due to the total anti symmetry of the structure 
constants of Je and to the orthogonality of the irre
ducible subspaces fa:, the gauge field equation can be 
decomposed into the form 

TJ(IXY = V;. Tc/>(IX)";', 

while a similar decomposition holds for the Lagran
gian (18) and the field equations for other multiplet 
fields. Thus one must conclude that, in a locally 
gauge-invariant theory, gauge fields of physical 
interest have simple compact Je and that all the multi
plet fields may be classified according to the irreduc
ible representations of Je. 

VI. DISCUSSION 

Via the fundamental Lie algebraic and group 
properties of the gauge field present in any 10caIly 
gauge-invariant theory, the features of solutions to 
the gauge field equation were investigated under the 
requirement that their resultant energy density must 
always come out positive. For a theory involving only 
the self-coupled gauge field, this was done inde
pendently of the notion of an internal symmetry group. 
The results indicate that free gauge fields of physical 
interest must have simple and compact Je. 

In considering the case where the gauge field is both 
self-coupled and coupled to other multiplet fields, it 
was necessary to introduce the notion of an internal 
symmetry group. The precise nature of the coupling 
between the gauge field and the other multiplet fields, 
and of the symmetry group, was left unspecified. 
Gauge-invariant homogeneity and isotropy of event 
space for closed systems led to the condition that Je 
must be either identified with or a subgroup of the 
symmetry group. The possibility of the latter being 
a subgroup of Je, allowed through the requirement 
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that Je and the symmetry group be compatible,! is 
not allowed. 

Positive definiteness taken alone requires in the case 
of coupled fields only that Je be the direct product of 
an Abelian group e, its center, and compact simple 
groups jt. However, the subspaces transforming under 
the irreducible self-representations of Je and jt must 
coincide. It was further found that the presence of a 
nontrivial center could be expected to lead to un
physical pseudo-electromagnetic1ike interactions be
tween external multiplet fields. Hence, in locally 
gauge-invariant theories involving either coupled or 
free gauge fields, gauge fields of physical interest 
should have simple compact :Ie. Since the multiplet 
fields transforming under different irreducible repre
sentations of Je are orthogonal with respect to the 
internal metric, all the multiplet fields can be classified 
according to the irreducible representations of this 
group. 

In the classification of gauge fields allowed by 
generalizations of the Yang-Mills trick, global sym
metries of the first kind were generalized through 
minimal coupling to local symmetries, following the 
lead of Yang and Mills. The result was that theories 
derived along these lines should have simple sym
metry groups, with the gauge field transforming under 
the adjoint representation of the symmetry group. 
The internal holonomy group played no role. In the 
present investigation, the classification problem was 
approached from the point of view of how to general
ize possible theories of the free self-coupled gauge 
field and imbed them into symmetry theories involving 
other multiplet fields. Je was treated as fundamental. 
It is interesting to note that local gauge invariance 
alone (with recognition of the homogeneity and iso
tropy of event space) is sufficient to require that the 
gauge potentials are anti-Hermitian with respect to 
the internal metric and transform under the adjoint 
representation of the internal symmetry group. These 
assumptions do not have to be made at the outset, as 
is customary in generalizing the Yang-MiIls trick. 

The precise relationship between the internal holon
omy and symmetry groups requires further investi
gation. The statement that Je must be either identical 
to or a subgroup of the symmetry group refers only 
to their structure and not to the physical notions 
associated with them. This is particularly important 
when one recognizes that both groups may have a 
strong coordinate dependence. 

Although the Je(XK) at different events are isomor
phic, they may tend asymptotically away from a 
localized region in event space to an Abelian group of 
lower dimensionality. This fact has played an impor-

tant role in leading to the asymptotic identification for 
the electromagnetic part of the gauge field. 8 Therein, 
Je tends away from the sources of the gauge field to an 
Abelian group, and the long-range component of the 
gauge field is identified with the electromagnetic field. 
Crucial is the coordinate dependence of the internal 
symmetry group. If one requires that the theory be 
invariant under the fuIl symmetry group at all events, 
there clearly can be no electromagnetic breaking of 
isospin symmetry. In this case it would appear neces
sary to reject the asymptotic identification. On the 
other hand, in the context of the asymptotic identi
fication, the charge measuring operators can be shown 
to restrict the allowed symmetry and holonomy group 
transformations as one moves away from the sources 
of the gauge field. Since the latter governs the dynamic 
symmetry of the interactions between sources, one can 
construct a model in which the symmetries of the 
interactions between sources decreases with their 
increased separation. Thus by not attempting to a 
priori identify the gauge field with a particle multiplet 
field, one can conjecture at a theory in which the 
gauge field presents a unified approach to electro
magnetic and strong interactions within the context 
of local gauge theory and which at the same time 
accounts for electromagnetic and medium strength 
breaking of strong interactions. 28 
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The problem of diffraction of time harmonic electromagnetic waves by a perfectly conducting thin 
annular disk is solved when the incident wave is a plane wave traveling in a direction perpendicular to the 
annulus. The electromagnetic problem is reduced to two scalar problems with the help of the Hertz vector 
representation formulas. Each of these scalar problems is formulated in terms of a Fredholm integral 
equation of the first kind, which is subsequently reduced to a system of four simultaneous Fredholm 
integral equations of the second kind. This system is then solved by the straightforward iteration scheme. 
Low-frequency approximations are presented for various physical quantities such as the components 
of the induced surface current density at the disk and the scattering cross section. 

1. INTRODUCTION 
The problem of electromagnetic diffraction by a 

thin circular conducting disk has been solved by many 
authors and by widely differing techniques. An 
account of these attempts is given in Refs. 1-6. 
However, there has been no attempt made so far to 
solve the corresponding problem of an annular disk. 
The reason is that it is a three-part boundary value 
problem, and until recently there were not many 
mathematical techniques available for solving such a 
problem. With the appearance of a paper by Gubenko 
and MossakovskiF a great interest has been arou.sed 
to solve three-part boundary value problems. In the 
process, several interesting methods have been devised. 
An integral equation technique which has its origin in 
the researches of Copson,s Williams,9 Thomas,lo and 
the present authorsl1.12 appears to be very suitable 
for the purpose. In this paper we extend that technique 
and present the solution for the problem of electro
magnetic diffraction by an ideally conducting circular 
annulus. 

We use a Hertz vector formulation as used by Bazer 
and Rubenfeld6 in their study of the electromagnetic 
diffraction by a circular aperture in a plane screen. 

Thereby, the present problem reduces to two scalar 
problems which are linked by three arbitrary con
stants. These constants are subsequently evaluated 
with the help of the edge and continuity conditions. 
Each of these two scalar problems is reduced to the 
solution of a Fredholm integral equation of the first 
kind which is subsequently reduced to two Volterra 
integral equations and a system of four simultaneous 
Fredholm integral equations of the second kind. The 
former have a rather elementary kernel and therefore 
can be readily inverted, while the latter are solved by 
the standard iteration procedure. Although these 
integral equations are valid for all wavelengths and all 
the ratios of the inner and outer radii of the annulus, 
they are specially useful when the waves have long 
wavelengths compared with the outer radius and the 
inner radius is much smaller than the outer radius. 

In Sec. 2 we present the mathematical formulation 
of the problem. Section 3 contains the mathematical 
technique for solving this problem, and we have 
included it for the sake of completeness as well as for 
ease of reference. We present the solution in Sec. 4. 
The edge conditions are studied in Sec. 5, wherein the 
three constants mentioned above are evaluated. In 
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account of these attempts is given in Refs. 1-6. 
However, there has been no attempt made so far to 
solve the corresponding problem of an annular disk. 
The reason is that it is a three-part boundary value 
problem, and until recently there were not many 
mathematical techniques available for solving such a 
problem. With the appearance of a paper by Gubenko 
and MossakovskiF a great interest has been arou.sed 
to solve three-part boundary value problems. In the 
process, several interesting methods have been devised. 
An integral equation technique which has its origin in 
the researches of Copson,s Williams,9 Thomas,lo and 
the present authorsl1.12 appears to be very suitable 
for the purpose. In this paper we extend that technique 
and present the solution for the problem of electro
magnetic diffraction by an ideally conducting circular 
annulus. 

We use a Hertz vector formulation as used by Bazer 
and Rubenfeld6 in their study of the electromagnetic 
diffraction by a circular aperture in a plane screen. 

Thereby, the present problem reduces to two scalar 
problems which are linked by three arbitrary con
stants. These constants are subsequently evaluated 
with the help of the edge and continuity conditions. 
Each of these two scalar problems is reduced to the 
solution of a Fredholm integral equation of the first 
kind which is subsequently reduced to two Volterra 
integral equations and a system of four simultaneous 
Fredholm integral equations of the second kind. The 
former have a rather elementary kernel and therefore 
can be readily inverted, while the latter are solved by 
the standard iteration procedure. Although these 
integral equations are valid for all wavelengths and all 
the ratios of the inner and outer radii of the annulus, 
they are specially useful when the waves have long 
wavelengths compared with the outer radius and the 
inner radius is much smaller than the outer radius. 

In Sec. 2 we present the mathematical formulation 
of the problem. Section 3 contains the mathematical 
technique for solving this problem, and we have 
included it for the sake of completeness as well as for 
ease of reference. We present the solution in Sec. 4. 
The edge conditions are studied in Sec. 5, wherein the 
three constants mentioned above are evaluated. In 
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Sec. 6 we present the formulas for the components-of 
the induced surface current density at the disk and the 
scattering cross section. 

2. MATHEMATICAL FORMULATION 
OF THE PROBLEM 

Cylindrical polar coordinates (p, cp, z) are chosen 
with the origin at the center of the annular disk so 
that the disk occupies the region z = 0, b ~ P ~ a, 
for all cp. The medium has the permittivity E and 
permeability fl, while the speed of propagation of 
electromagnetic waves is c = (Efl)-!' Maxwell equa
tions in source-free regions (in rationalized MKS 
units) are 

curl E - iWflH = 0, div E = 0, 

curl H + iWEE = 0, div H = 0, (2.1) 

where E and H are the electric field and magnetic 
field intensities, respectively. In the above equations 
and in the sequel, a time dependence exp (-iwt) is 
understood and omitted. 

Let an incident plane wave traveling along the z 
axis, due to sources in the half-space z < 0, impinge 
on the circular annulus. If E(O) and H(O) are the time
independent parts of the electric field and magnetic 
field intensities of this incident wave, then 

E(O) = (E(O) E(O) E(O) 
P' tp' z 

= (cos cp, -sin cp, 0) exp (ikz), 

H(O) - (H(O) H(O) H(O) 
- P' "" z 
= (E/fl)!(sin cp, cos cp, 0) exp (ikz), (2.2) 

and k = w/c. The time-independent parts of the 
electric and magnetic intensities of the total field are 

E = E(O) + EO), H = H(O) + WI), (2.3) 

where E(1) and WI) correspond to the diffracted field. 
We can represent the diffracted field in terms of a 
magnetic Hertz vector M: 

M = (Mp , Mrp, Mz) 

= {MI(p, z) sin cp, MI(p, z) cos cp, M 2(p, z) sin cp}, 

(2.4) 

E(1) = iWfl curl M, H(I) = (grad div M) + k 2M, 

(2.5) 
where 

and 

or 

or 
02M2 10M2 M2 o2M2 2 
---;-2 + - -:::l- - -2 + -;-;- + k M2 = 0. (2.7) 
up P up P uz 

Besides, from (2.4) and (2.5), we have 

(2.8) 

(1) • (OMI) E z = lWfl --a; cos cp, 

H~l) = (02Ml _ o2M2 _ ! oM2 + M2) sin cp. 
opoz Op2 P op p2 

The boundary conditions are: 

(i) The tangential component of E vanishes on the 
annulus; 

(ii) E and H are continuous across the region 
z = 0, P > a, 0 ~ p < b; 

(iii) Ml and M2 satisfy the radiation condition at 
infinity. 

In terms of the scalar fields M] and M 2 , these bound
ary conditions take a simple form. Indeed, for MI we 
have 

[
aMI] [OMI] i - = - =A-- b<p<a oz z~o+ oz z~o- Wfl ' - - , 

(2.9) 

M d OMI. 0 
I an -- are contmuous across z = , p > a, 

Oz 
(2.10) 

[MI(p, z)L~o+ - [MICp, z)]z=o- = E, 0::::;; P < b, 

(2.11) 

[aMI] _ [aMI] = C, 0 ~ p < b, (2.12) 
dz Z~O+ oZ z=o-

where A, B, and C are three unknown constants 
which shall be eventually evaluated with the help of 
the edge conditions and continuity considerations of 
the quantities [MI(p, z)]z~o± and [M2(p, z)L=o±, 
which are functions of p. 



                                                                                                                                    

ELECTROMAGNETIC DIFFRACTION 725 

The corresponding boundary conditions for M2 are where 
y = -i(k2 - p2)t, k ~ p, 

[M2lz=o+ = [M2L=o- = Ap, b.$; p .$; a, (2.13) 

d
oM2 ' 0 M 2 an - are contmuous across z = , p > a, 

OZ 
(2.14) 

[OM2] _ [OM2] _ -eRp O.$; p < b, 
oz %=0+ GZ z=o-- , 

(2.15) 

[M21z=0+ - [M2L=0- = Cp, O.$; P < b. (2.16) 

The electromagnetic problem has thus been reduced 
to two scalar problems: one, to determine Ml from 
(2.6) subject to the boundary conditions (2.9)-(2.12) 
and, second, to determine M2 from (2.7) subject to the 
boundary conditions (2.13)-(2.16). These two scalar 
problems are linked by three arbitrary constants A, 
R, and C. 

The next step is to give both these scalar problems 
an integral equation formulation. We start with Ml 
and define the jump 

f(p) = [M](p, z)].=o+ - [M1(p, z)].=o_' (2.17) 

From (2.10) and (2.11) it follows that 

f(p) = 0, p > a, J(p) = B, 0 S p < b. (2.18) 

It is traditionally known by applying the Green's 
function method1.13 that the differential equation 
(2.6) subject to the boundary conditions (2.9)-(2.11) 
has the integral representation formula 

M}(p, z) = 1- fa f2"tl(t){~(€ikR)} . do/I dt 
417 Jo Jo OZI R Zl~O 
_ ~ fb f2"t{€ikR} dfIJ dt (2.19) 

417 Jo Jo R Zi=O 1 , 

where (t, fIJI' ZI) denotes the point on the annular disk 
and 

R = [p2 + t 2 - 2pt cos (fIJ - fIJI) + (z - Z})2]!. 

Using the boundary condition (2.9) in (2.19), we 
obtain 

(2.20) 

= (p2 _ k2)t, P ~ k. (2.21 ) 

But 

(02 
1 0) 

Op2 + ; op Jo(pp) = -lJo(pp); 

therefore, (2.20) becomes 

where we have used the boundary condition (2.18). 
It follows from the integral representation formula 

(2.19) for the function M 1(p, z) that [M1(p, z)]z=±o 
are continuous functions of p for all values of p if and 
only if the function J(p) defined by the relation (2.17) 
is also continuous for all values of p, and we obtain 
from (2.18) 

J(a) = 0, B = feb). (2.23) 

Furthermore, it is interesting to observe that if the 
relation (2.23) did not hold, then we would have 
ended up getting a divergent integral (as p - b) on the 
right side of (2.22). 

From (2.22) and (2.23) it follows that 

2p(A - ~jJ 

= :p (p fbato/1(t) La) ~ J1(PP)J1(pt) dp dt), 

b s p S a, (2.24) 
where 

d 
o/l(P) = - [f(p)] and lea) = 0. (2.25) 

dp 

Now integrate (2.24) with respect to p, and divide both 
sides by p to get the Fredholm integral equation of the 
first kind, 

fl(p) = (A - ~)p 

= J:tr/>l(t)K ll(t, p) dt, b S p S a, (2.26) 
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where the kernel Kn(t, p) is 

(2.27) 

Let us now attend to finding the corresponding 
integral representation formula for M2 from the 
boundary value problem as embodied in the differ
ential equation (2.7) and the boundary conditions 
(2.13)-(2.16). This is accomplished by defining the 
jump 

Thus from (2.14) and (2.15) it follows that 

¢2(P) = 0, a < p < 00, 

¢2(P) = -Bk2p = -k2pl(b) , ° S P < b. (2.29) 

Again by applying the usual Green's function ap
proach, we find that the boundary value problem for 
M2 is governed by the formula 

Mlp, z) sin ffJ 

= _ -.l (a (2lr t¢2(t){e
ikR

} sin ffJl dffJI dt 
417 Jo Jo R '1=0 

+ - t2 
- - sin ffJl dffJl dt. (2.30) C lbl21T { 0 (e ikR

)} 

417 0 0 OZI R Z1=0 

By setting ffJI - ffJ = ?p, after simplification we obtain 

(2.31) 

The boundary conditions (2.13) and (2.29) lead to the where 
Fredholm integral equation of the first kind, 00 

fl(P) = I arl, 0 s p S a, 

f2(P) = ft¢2(t)K21(t, p) dt, b s p s a, (2.32) 

where 

K
21

(t, p) = (00 pJ1(pp)Jipt) dp (2.33) 
Jo y 

and 

f2(P) = -2Ap + Bk2 (b t2 (00 l!. J1(PP)JI(pt) dp dt, Jo Jo y 

b s p s a. (2.34) 

It is interesting to note that Eqs. (2.26) and (2.32) do 
not involve the constant C. 

In the next section we present a mathematical 
technique for solving the integral equations of the 
type (2.26) and (2.32). 

3. MATHEMATICAL TECHNIQUE 

Both the integral equations (2.26) and (2.32) are of 
the form 

f(p) = fK1(t, p)g(t) dt, b s p S a, (3.1) 

where the functions f and K are given and g(t) is to be 
found. We follow Gubenko and MossakovskiF and 
set 

00 

f(p) = ! arl = fl(P) + .Mp), b s p S a, (3.2) 
r=-oo 

r=() 

-1 

f2(P) = I arpr, b S p < 00. (3.3) 
r=-oo 

Furthermore, we define two more functions gl(P) and 
gz(p) such that 

gl(P) + g2(P) = 0, ° s p < b, 

= g(p), b S p S a, 

= 0, a < p < 00. (3.4) 

With the help of the relations (3.2)-(3.4), the 
integral equation (3.1) becomes equivalent to the pair 
of integral equations 

fl(P) = Loo gl(t)KI(t, p) dt, 0 < P S a, (3.5) 

fz(p) = 100 
g2(t) K1(t, p) dt, b s P < 00. (3.6) 

The present method is based on perturbing the 
kernel K1(t, p) on a known suitable kernel KoCt, p): 

K1(t, p) = Ko(/, p) + G(t, p), (3.7) 

where the difference kernel G(/, p) is in some sense 
smaller than the dominant part Ko(t, p). Putting (3.7) 
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in (3.5) and (3.6), we have 

LX> Ko(t, P)gl(t) dt 

= fI(p) -100 

G(t, P)gl(t) dt, 0 < P ~ a, (3.8) 

L<Xl Ko(t, P)g2(t) dt 

= f2(p) - L<Xl G(t, P)g2(t) dt, b ~ P < 00. (3.9) 

The choice of Ko(t, p) is such that for all get) it 
satisfies the relation 

i<Xl Ko(t, p)g(t) dt 

= hll(p) r K2(w, p)[haCW)]2 

X LX! K2(w, t)g(t)h13(t) dt dw, 

= h21(P) 100 

K2(p, W)[h 22(W)]2 

0< P < 00, 

and 

h21(P) 100 

K2(w, P)[h22(WWi
W 

K 2(t, w)g2(t)h2S(t)dt dw 

= Np) - h21(P) 1 00 K2(p, W)h22(W) 100 

L2(v, W)h22(V) 

X fK2(t, v)g2(t)h2aCt)dt dvdw, b~p< 00, 

(3.15) 

where we have assumed that various orders of inte
gration can be interchanged. 

Let us now define functions S1(P) , S2(P) , TI(P) , 
T2(p), C1(p), and C2(p) such that 

hI2(P) 100 

K 2(p, t)gl(t)h1S(t) dt = SI(P), 0 < p ~ a, 

= -T1(p), a < P < 00, 

(3.16) 

h22(P) LP Klt, p)g2(t)h2it) dt = -T2(p), 0 < P < b, 

=8lp), b ~ P < 00, 

X iW 

K2(t, w)g(t)h23(t) dt dw, 0< P < 00, (3.17) 

(3.10) hn(p) r Klw, p)C1(w)h12(W) dw = fI(p), 0 < P ~ a, 

where the functions hi;, i = 1, 2, j = 1, 2, 3, and K2 
are known functions. Besides, the kernel K2(t, p) is 
such that the Volterra equations 

SoP K2(t, p)g(t) dt = f(p), 0 < p < 00, (3.11) 

100 

K2(p, t)g(t) dt = f(p), 0 < p < 00, (3.12) 

possess explicit unique solutions for g in terms of/for 
all arbitrary differentiable functions f. This method 
also necessitates the introduction of two more func
tions LI(v, w) and L 2(v, w) such that 

G(t, p) = hll(P)h13(t) SoP fK2(W, p)K2(v, t) 

X hI2(W)h12(v)L)(v, w) dv dw 

= h21(P)h2aCt) 1001 <Xl K2(p, W)K2(t, v) 

X h22(W)h22(V)L2(V, w) dv dw. (3.13) 

The result of substituting (3.10) and (3.13) in the 
relations (3.8) and (3.9) is the integral equations 

hll(p) (P K2(w, P)[hI2(W)]2 (<Xl K2(w, t)gl(t)h13(t) dt dw Jo JIV 
= fl(p) - hl1(p) lP Klw, P)hllw) 1 00 L1(v, W)h12(V) 

X i'" K2(v, t)gl(t)h13(t) dt dv dw, 0 < p ~ a, 

(3.14) 

(3.18) 

h21(P) LX! K2(p, w)C2(w)h 22(W) dw = J~(p), 
b ~ P < 00. (3.19) 

The integral equations (3.16)-(3.19) are of the form 
(3.11) and (3.12), which can be inverted in view of our 
earlier assumptions. Thus it follows from Eqs. (3.18) 
and (3.19) that the functions C1(p) and C2(p) are 
known in terms of 11 (p) and 12(P)' Moreover, from 
(3.14), (3.16), and (3.18) we derive the equation 

SI(P) + f LlV, P)SI(V) dv 

= C1(p) + 100 

Ll(V, p)T1(v) dv, 0 < P ~ a. (3.20) 

Similarly, the result of combining (3.15), (3.17), and 
(3.19) is 

S2(P) + i<XlL2(V, P)S2(V) dv 

= C2(p) + fL2(V, P)T2(V) dv, b ~ P < 00. (3.21) 

Since we have four unknown functions 81 , 8 2 , TI , 

and T2 , we need two more equations to supplement 
(3.20) and (3.21). They are readily obtained as follows: 
From the relations (3.4) and (3.16) we get the integral 
equation 

Tl(p) = hI2(P) 100 

K2(p, t)g2(t)h1aCt) dt, a < P < 00, 

(3.22) 



                                                                                                                                    

728 D. L. JAIN AND R. P. KANWAL 

while the relations (3.4) and (3.17) yield the equation 

T2(P) = h22(P) loP K2(t, p)g1(t)h23(t) dt, ° < P < b. 

(3.23) 

Inverting (3.17), we find g2(t) in terms of T2 and S2, 
and the result of substituting this value in (3.22) is an 
integral equation containing the unknown functions 
S2' TI , and T2• Similarly, inverting (3.16) yieldsg1(t), 
which when substituted in (3.23) results in an integral 
equation containing the unknown functions S1' T1 , 

and T2 • Thereby, we have succeeded in deducing a 
system of four simultaneous integral equations 
involving four unknown functions S1, S2, T1 , and T2· 
These equations are the Fredholm integral equations 
of the second kind and, as such, can be solved by the 
Neumann iteration scheme. Once we have solved this 
determinate system, we can recover the values of the 
functions gl(P) and g2(P) from the integral equations 
(3.16) and (3.17). Finally, the relation (3.4) gives us the 
value of the unknown function g(p) of the original 
integral equation. 

4. SOLUTION OF THE PROBLEM 

Comparing (2.26) with (3.1), we have 

g( ) _ -I. () K (t ) -100 
yJtCpp)J1(pt) dp P - P'f'l P , 11, P - , 

o p 

fI(p) = (A - i/wft)p, (4.1) 

When we use the formulas 

_ (2P)! 1 lP J n--!(pw)w
n
+! dw 

In(pp) - - - ( 2 2)! ' 
7T pn 0 P - w 

(4.6) 

_ (2P)! nl
OO 

In+!(pW)w-
n
+! dw 

- - (p) 2 2 ! ,(4.7) 
7T P (w - p) 

and 
(00 r5(w - v) 

Jo pJ n+!(pw)J n+!(Pv) dp = (wv)! ' (4.8) 

with r5 being the Dirac delta function, we find from 
(4.4) that, for all get), 

° < p < 00, 

° < p < 00, 

(4.9) 
Similarly, from (4.5) we have 

G (t p) __ 2_ (P t (wv)l 
1, - (7T pt) Jo Jo (p2 _ W2}~(t2 _ V2)~ 

x (L>Op(; -1)J!(PV)J!(PW)dP) dvdw 

(2Pt)i oo (00 (wv)-! 
= ---;- P Jt (w 2 - p2)!(V2 _ t2)! 

fll(p) = (A - i/wft)p, ° ~ P ~ a, 

f12(p) = 0, b ~ p < 00, 

gl(P) = PCPn(P), g2(P) = PCP12(p), 
where 

X (100 
P (; - 1) J~(pv)J!(pw) dp) dv dw. 

(4.10) 

(4.2) Comparing (4.9) and (4.10) with (3.10) and (3.13) 
gives 

CPll(p) + CP12(P) = 0, ° ~ p < b, 

= CP1(P), b ~ P ~ a, 

= 0, a < p < 00, (4.3) 

and where the subscript 1 has been introduced to 
signify that we are dealing with the scalar problem 
for MI' 

We split Kll as in (3.7): 

Kll(/, p) = Ko(/, p) + Gl(/, p), 
where 

Ko(t, p) = 100 
Jl(PP)Jl(pt) dp, (4.4) 

Gl(t, p) = LX' (; - 1) J1(PP)J1(pt) dp. (4.5) 

h1l1(p) = 2/7Tp, hl12(p) = P, hU3(P) = 1/ p, 

hl21(p) = 2p/7T, h122(p) = I/p, h123(P) = p, (4.11) 

K2(t, p) = (p2 - t2)-!, 

L 1I(v, w) = (vw)! LX' (y - p)J!(pv)J!(pw) dp, (4.12) 

L 12(V, w) = (vw)! 100 
(y - P)JI(pv)J!(pw) dp. (4.13) 

Since the kernel K2 = (p2 - t 2)-! is a rather simple 
kernel, the Volterra integral equations (3.11) and 
(3.12) can be readily inverted. Thus the splitting of the 
kernel K ll (t, p) satisfies all the requirements of the 
previous section. We can, therefore, follow that 
analysis, and the integral equation (2.26) leads to a 
set of the following four simultaneous Fredholm 
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integral equations of the second kind: 

Sl1(p) + fSU(V)Ll1(V, p) dv 

= Cn(p) +100 

Tll(v)Ll1(v, p) dv, 

Sllp) + 100 

S12(V)L12(V, p) dv 

= C12(P) + f T12(v)L12(V, p) dv, 

where 

a < P < 00, 

(4.14) 

0< k < b, 

(4.15) 

0< p S a, 

(4.16) 

b S p < 00, 

(4.17) 

fOO cPn(t) dt 
p P (t2 _ p2)! = Sl1(p), 0< p S a, 

= -Tn(P), a < P < 00, (4.18) 

.! lP t
2
P1lt) dt - - 1', ( ) 0< p < b, (2 2)! - 12 P , pop - t 

= S12(P), b s p < 00, (4.19) 

2 lP t
2 

d 
111(p) = - - (2 2)! d-

11'P 0 P - t t 

fa Sn(U) du dt 
Xl, 

t (U 2 _ t 2)"2" 
o < p < b, (4.20) 

2p fOO t-2 d 
112(p) = - ( 2 2)t -d 

11' P t - P t 

it U2S12(U) du dt 
X 1 , 

b (t2 _ U2)~ 
a < p < 00, (4.21) 

1 d iP t"in(t) dt 
Cll(p) = - - 2 2 t, 0 < p S a, (4.22) 

pdp 0 (p - t) 

C ( ) d i oo f12(t) dt 
12 p = - P -d 2 0 t' b S p < 00, 

p P (t - p") 
(4.23) 

and 2F1 is a hypergeometric function 

2F1(t, 1, t; X 2/y2) = (3y/4x3) 

X {2xy - (y2 - x2) log [(y + x)/(y - x)]), x < y. 

Since !l1(p) = (A - i/wft)p and 112(P) = 0, Eqs. 
(4.22) and (4.23) yield 

Cl1(p) = 2(A - i/wft)p, C12(P) = O. (4.24) 

Now, if we can solve the four integral equations 
(4.14)-(4.17) for Sn, S12, Tn, and T12 , then we can 
invert the integral equations (4.18) and (4.19) and 
obtain the values of cPn and cPl2' which in turn give 
the value of the required function cPl from the relation 
(4.3): 

cP1(P) = - ~ !!...(fa Sl1(u) du -100 

Tn(u) du) 
11' dp P (u 2 - l)i a (u2 _ p2)t 

+ ~ ~(_ (b u
2
Tl2(U) du + (P U2

S12(U) dU), 
11'ldp JP (p2 _ u2)t Jb (p2 _ u2)t 

b S p S a. (4.25) 

The system of integral equations (4.14)-(4.17) is 
valid for all wavelengths and the ratios b/a. They are 
specially useful for applying the iteration scheme when 
the waves have long wavelengths compared with the 
outer radius a of the annulus and when the inner 
radius b is much smaller than a. Thus we have the 
perturbation parameters 

oc = ak, f3 = bk, A = b/a = f3/oc. 

We shall, therefore, assume in the sequel that oc « I, 
oc = O(A), and f3 = ocA = O(oc2

). Fortunately, the 
kernels of the Eqs. (4.14)-(4.17) tend to zero when 
A, IX, and f3 tend to zero. Indeed, by using Noble's 
contour integration technique,l4 we have 

Ln(v, p) 

= _i(vp)t f(k 2 
- /)!Hi1)(pp)Jt(pv) dp, p;;::: v, 

. ti,e 2 2 ! (1) 
= -1(Vp) 0 (k - p) Jt(pp)H! (pV) dp, v;;::: p, 

(4.26) 

where H;ll is a Hankel function of the first kind. 
Since the Bessel and Hankel functions of order! can 
be expressed in terms of elementary functions, the 
formula (4.26) yields the following approximate 
expansion: 

L (v ) = -k
2
v _ 2ipvk3 + (v3 + 3p

2
v)k

4 

n ,p 2 311' 48 

+ 2i(p3V + pv
3
)k

5 + O(k6) > v 
4517 ' P - , 

_k2p 2ipve (p3 + 3pv2)k4 

= -- - -- + '-'----'-----'-----'--
2 311' 48 

+ 2i(pV3 + p3v)k
5 + O(k6 ) 

4511' ' v;;::: p. 

(4.27) 



                                                                                                                                    

730 D. L. JAIN AND R. P. KANWAL 

Similarly, 

L 12(P, v) = _k2v2j6p + 0(k3), p;;::: v, 

= -k2p2j6v + 0(k3), v;;::: p. (4.28) 

With this much data in our hands, we proceed to 
solve the system of integral equations (4.14)-(4.17) 
and start with (4.16). Setting 

we split Eq. (4.16) into two simpler integral equations 

X l1(ap) = 2a(A - :.JP 

- a f X l1(av)Ll1(av, ap) dv, 0 < p ~ 1, (4.30) 

and 

Wl1(ap) = a LXl Ll1(av, ap)Tl1(av) dv 

- a fLll(aV, ap)Wl1(av) dv, 0 < p ~ 1. (4.31) 

Equation (4.30) contains only one unknown function 
and can be solved by the straightforward iteration 
scheme. In fact, when we substitute the value of 
aLll(av, ap) from (4.27) in (4.30), an approximate 
value of Xn(ap) is obtained as 

Xn(ap) = 2a(A - i/wfl) 

x [cll (at)p + C13(at)p3 + CdO()p5 + 0(at6)], 

o < p ~ I, (4.32) 

at2 2iat3 7at4 4liat5 

C (at) = 1 + - + - + - + --
11 4 97T 192 4507T ' 

(4.33) 

The unknown functions occurring in the relation 
(4.14)-(4.21) have to be evaluated in the order 

Having found Xn , we proceed to evaluate the other 
functions in the above sequence and end up with the 
following approximate values of the unknown 
functions Sll, S12, Tn, and T'2 as 

Sn(ap) = Xn(ap) + O«A - iJwfl)at2).5), 

O<p~l, (4.35) 

S12(bp) = -(4aJ457T)(A - iJwfl)at2).4[p-l + 0(at2)], 

1 ~ p < 00, (4.36) 

Tll(ap) = 32a(A - i/U)fl)().5/457T2)[p-3 + 0(at2)], 

1 < p < 00, (4.37) 

T12(bp) = (8a/37T)(A - i/wfl)).2 p2 

x {[cn(at) - CI3(at) - ?!CI5(at)] + t).2p2 

x [cl1(at) + 3cdat)] + 31;A4p4 + 0(at5)}, 

O<p<1. (4.38) 

Let us now solve the boundary value problem for 
M2 as embodied in the integral equation (2.32). The 
kernel K2I is split as 

K2I(t, p) = Ko(t, p) + G2(t, p), (4.39) 

where Ko(t, p) is given by (4.4) and 

It can be easily verified that this splitting of the 
kernel K21 of the integral equation (2.32) satisfies all 
the requirements of the previous section as for (2.26), 
and, comparing the corresponding expressions in 
Sec. 3, we have in this case 

h223(P) = p, K2(t, p) = (p2 - t2r~, 

gl(P) = P~21(P)' g2(P) = P~22(P)' (4.41) 

L 21(V, w) = (vw)! {Xl p(~ - 1 )JI/PV)J!(PW) dp, 

(4.42) 

L 22(V, w) = (Vw)!LXlp(~ - l)J~(PV)J!(pw) dp, 

(4.43) 

~21(P) + ~22(P) = 0, 0 ~ p < b, 

= ~2(P)' b ~ P ~ a, 

= 0, a < p < 00. (4.44) 

The next step requires that we write /2(P) = /21 (p) + 
!22(P) as in the relation (3.2). To accomplish that, we 
have to expand the integral occurring in (2.34) in 
powers of p. Now 

(b t2 (00 l!. J1(PP)J1(pt) dp dt 
Jo Jo y 

= fb t2 f"'J
1
Cpp)J1(pt) dp dt 

Jo Jo 
+ ft2l'Xl (; - 1 ) J1CPP)J1Cpt) dp dt. (4.45) 
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Using the relations (4.6) and (4.8), we have 

b4 
( 00 b2n (2n + l)A 2 ) = - 1 + 2I n , b ~ p ~ a, 

8l n~lln (n + l)(n + 2) 
(4.46) 

where 

A = 1 X 3 X 5 X ... X (2n - 1). (4.47) 
n 2 X 4 X 6 X ... X (2n) 

Similarly, 

1b 2100 (p ) 2p - t --1-
o 0 y 7Tpt 

ib W 

+ 0 (p2 _ w2)i 

X 1: VL 21(V, w)(b2 - V2)t dv dW}, b ~ P ~ a. 

(4.48) 

The kernel L 21(V, w) can be expanded in powers of k 
by applying Noble's contour integration technique14 

and we have 

(4.49) 

Substituting it in (4.48), we derive 

ft2ioo (~ - 1) J1(PP)J1(pt) dp dt 

k
2 (i b 

2 2 !iP 
VW dw dv =- v(b - v) t 

7Tp 0 v (p2 _ w2) 

+ (b 2 W 2tjbWU(b2-v2)!dUdW) 
.10 (p - W) w 

8ik
3 (JP w

2 
dw ) 

+ 37T2 p 0 (p2 _ w2)! 

X (f u2(b 2 
- u2)! dU) + O(k4) 

= P ( (bV2(b2 _ V2)t(p2 _ v2)! du + i [a w
2 

7Tp .10 .10 (p2 _ W2)t 

X (b 2 - w2)! dW) + nik3b4p + O(k4) 

= (k2(7Tp){pbhY7T + O(b6(p2)] + (1(3p)[O(b6
)]} 

+ 7/:rik3b4p + O(k4), b ~ p:::;; a. (4.50) 

Substituting the values of integrals from Eqs. (4.46) 
and (4.50) in (4.45), we readily obtain from (2.34) the 
values of the functions 121 and 122 in terms of the 
dimensionless parameters r:t. and A in the form 

JzlCap) = -2aAp + B[oc4}8-t-" + -l .. iocp) + O(oc10)], 

o ~ p :S 1, (4.51) 
f22(bp) 

=B[r:t.2A2(1+2~ (2n+l)A~ )+O(r:t.4A4)], 

8p2 1 p2n(n + l)(n + 2) 

1 ~ p < 00. (4.52) 



                                                                                                                                    

732 D. L. JAIN AND R. P. KANWAL 

We are now ready to apply the technique of the last 
section for reducing the Fredholm integral equation 
of the first kind [(2.32)] to a set of four simultaneous 
integral equations of the second kind for four un
known functions S21, S22, T21 , and T22 . These equa
tions are 

a < P < 00, 

(4.53) 

Eq. (4.49). Similarly, 

L 22 (V, p) = (k2p2j6v) + 0(k3), v ~ p, 

= (k2V2/6p) + 0(k3), p ~ v. (4.63) 

From the relations (4.44), (4.59), and (4.60), it follows 
that 

cMp) = _ 2:..!!.( fa S21(U) du 
1T dp JP (u2 

- l)t 

-1 00 
T21(U) dU) +.2. ~(_ (b u

2
T22(U) du 

a (u2 _ p2)! 1Tl dp Jo (p2 _ u2)t 

Ip U2S22(U) dU) + ! ' b ~ p ~ a. (4.64) 
b (p2 _ u2) 

0< p < b, Putting the values of /21 and /22 from (4.51) and 
(4.54) (4.52) into (4.61) and (4.62), we have 

S21(p) + f L21(V, P)S21(V) dv 

= C21(P) + LX! £21(V, p)T21(v) dv, 0 < P ~ a, 

(4.55) 

S22(P) + LX! L22( v, P )S22( v) dv 

= C22(P) + f£22(V, P)T22(V) dv, b ~ P < 00, 

(4.56) 

C21(ap) = -4aAp + B[.x4A4U21T + /2i.xp) + O(.xlO
)], 

0< p ~ 1, (4.65) 

C22(bp) = B[.x~2 (;2 + 2 ~ p2n+;; + 2») + 0(.x
4
l
4
)} 

1 ~ p < 00. (4.66) 

The steps of solving the system of Eqs. (4.53)-(4.56) 
are the same as for the system (4.14)-(4.17). First, we 
set 

which splits the Eq. (4.55) into two equations: 

o < p < b, (4.57) X2iap) = C21(ap) - a fL21(aV, ap)X21(av) dv, 

0< p ~ 1, (4.68) 

W21(ap) = a 100 

L21(av, ap)T21(av) dv 

a < p < 00, (4.58) - a f L21(aV, ap)W21(av) dv, 0 < p ~ 1. (4.69) 

o < p ~ a Equation (4.68) is easily solved to yield 

a < p < 00' (4.59) 

O<p<b 
b =:; p < 00' (4.60) 

o < p ~ a, (4.61) 

X21(ap) 

= -4Aa[c21(IX)p + C2S(iX)pS + C25(iX)p5 + 0(iX6
)] 

+ BiX4l4[~1T + /2iiXp + 0(iX2)], (4.70) 
where 

.x2 4ia.3 191)(4 53ia.5 

C21(a.) = 1 - '4 - 91T + 192 + 2251T ' 

The next step is to proceed in the order as given by the 
sequence (4.34) with first subscript changed to 2. 
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Thereby, the required solutions for S21, S22' T21 , and 
T22 are 

S21(ap) = X21(ap) + O(1X2).5A) + O(1X4).5B), 

0< p ~ 1, (4.72) 

S22(bp) = _ 8A(aIX
2
).4)(1 + O(1X2») + B[1X2).2 

457T P 4 

x (.!. + 2 I . An ) + O(1X4).4)] 
p2 1 p.n+2(n + 2) 

= -[8A(aIX2).4)/457T][p-1 + O(1X2)] 

+ B{1X2).2[ -(1 _ p-2)! 

_ fP2(1 _ p-2)! + fp2] 

+ O(1X4).4)}, 1 ~ P < 00, (4.73) 

T21(ap) = -(64Aa).5/457T2)[p-3 + O(1X2)] 

+ (8Boc2).5/457T)[p-3 + O().2)], 1 < p < 00, (4.74) 

T22(bp) = -(16Aa).2p2/37T){[c21(1X) - C23(1X) - !C25(1X)] 

+ -g-).2p2[C21(1X) + 3C23 (1X)] + <j1;).4p4 

+ O(1X5)} + o (1X8B) , 0 < p < 1. (4.75) 

5. EVALUATION OF THE CONSTANTS 
A, B, AND C 

We found in Sec. 2 that the continuity of [M, 
(p, z)].=±o at the inner edge p = b helped us to 
get the relation B = feb). We shall now evaluate A 
with the help of the outer edge condition and then 
evaluate B from the solution. To accomplish that, let 
us denote the total induced surface current density at 
the disk by j(p, rp, 0) = (jp ,j'P' 0). Then the outer 
edge condition demands that 

jp(p, rp, 0) = O«a2 - p2)!) as p ---+ a, (5.1) 

jtp(p, rp, 0) = O«a2 - p2)-!) as p ---+ a. (5.2) 

Now at the disk 

jp(p, rp,O) = [H~l)J.=o_ - [H~)]2=O+ 
= -cos rp{p-l[4>I(P) + 4>2(P)] + k 2I(p)}, 

b ~ p ~ a, (5.3) 

j'P(p, rp, 0) = [H~I)J.=o+ - [H~I)L=o_ 

= sin rp[4>{(p) + 4>~(p) + k2I(p)], 

b ~ p ~ a. (5.4) 

The behavior of the function 4>1 (p) at p = a is easily 
determined if we appeal to the relations (4.3), (4.18), 
(4.19), and (4.25). We get (see Appendix) 

A.. ( ) _ ~(su(a) + Tu(a) 2 2! ) 
'1'1 P - ( 2 2)1 + O«a - p ) ) 7T a - p 'J: 

as p -+ a. (5.5) 

Similarly, 

q,2(P) = ~(S21(a) + T21(a) + O«a2 _ p2)!») 
7T (a 2 _ p2)! 

as p -+ a. (5.6) 

It therefore follows from (5.3)-(5.6) that the edge 
conditions (5.1) and (5.2) are satisfied if 

Sn(a) + Tn(a) + S21(a) + T21(a) = 0, (5.7) 

since we have already made use of relation f(a) = 0 
to insure the uniqueness of the solution f(p) of the 
differential equation (2.25). Substituting the values of 
the functions Sn, Tn, S21' and T21 from the last 
section in (5.7), we obtain 

2a(A - i/wfl)[cn(lX) + CI3(1X) + CI5 (OC) + O(1X6)] 

+ 32a(A - i/wfl)().5/457T2)[1.+ O(1X2)] 

= 4Aa[c21(1X) + C23(1X) + C25(1X) + O(1X6)] 

- BIX4).4LI27T + nilX + O(1X2)] + (64Aa}.,5f457T2) 

x [1 + O(1X2)] - (8BIX2).5/457T)[1 + O().2)], 

(5.8) 
where B = feb). 

Now we explain the procedure to be followed for 
determining the unknown constants A and B. Sub
stituting the values of Sn, S12, Tn, and T12 obtained 
in the last section into (4.25), we determine the value 
of 4>1 in terms of the unknown constant A. Substi
tuting this value of 4>1 in (2.25), we solve it to find the 
solution J(p) in terms of the unknown constant A. 
From this expression of J(p), we obtain feb) in terms 
of A. Thus we have determined the value of B in terms 
of A, which when substituted in (5.8) gives the required 
value of the unknown constant A, and thereby f(p) 
is completely determined. Putting p = b in this value 
of f(p), we also obtain the value of the second con
stant B = J(b). 

Following the above procedure, we obtain 

A = - i(1 + 21X2 + 4iIX
3 

+ 21X4 + 136iIX
5 

+ O(1X6») 
wfl 3 37T 15 1357T ' 

(5.9) 

(5.10) 

Having determined both the constants A and B, we 
can write down the approximate expansions of XiI' 
Si;, and Tij, i = 1, 2, j = 1,2, from (4.32), (4.35)
(4.38), (4.70), and (4.72)-(4.75): 

Xn(ap) = -(4ai/wfl) 

x [dn(lX)p + dI3 (IX)p3 + dI5 (IX)p5 + O(1X6)], 

0< P ~ 1, (5.11) 



                                                                                                                                    

734 D. L. JAIN AND R. P. KANWAL 

where 

d (oc) = 1 + 7oc
2 + 8ioc

2 + 179oc
4 + 188ioc

5 
• 

11 12 97T 960 2257T ' 

oc2 17oc4 4ias 
du(oc) = - 12 - 288 - 457T' (5.12) 

a4 

dl5(oc) = -, 
320 

Sn(ap) = Xn(ap) + 0(oc7
), 0 < psi, (5.13) 

S12(bp) = (8aioc2J.4j457TW,u)[p-l + 0(oc2)], 

1 S p < 00, (S.14) 

Tll(ap) = -(64iaJ.5j457T2,uW)[p-3 + 0(oc2)], 

1 < p < 00, (5.15) 
T12(bp) = -(16iaj37Tw,u) 

X {J.2p2[dll (oc) - d13(OC) - !d1S(oc)] 

+ tJ.4p4[dn (oc) + 3d13(OC)] + i\-J.6p6 

+ 0(oc7)}, 0 < p < 1, (5.16) 

X21(ap) = (4iafwft) 

with 

X [d21(oc)p + d23 (OC)p3 + d2S(oc)pS + 0(oc6)J, 
O<PSl, (5.17) 

d (oc) = 1 + 5oc
2 + 8ioc

3 + 21oc
4 + 138ioc

5 

21 12 97T 320 2257T' 

2 19 4 2/' S ",4 
d (",)--~+~+~ d () "" 

23 "" 12 288 157T' 2S oc = - 960 ' 

(5.18) 

(5.23) 

where 

= 1 + ioc2 + (8ioc3/97T) + goc4 + 208ioc5f2257T, 

e14 = -Hdll + 3d13) = t(1 + !oc2 + 8ioc3/97T), 

(5.24) 

S21(ap) = X21(ap) + 0(oc7
), 0 < PSI, 

S22(bp) = (8iaoc224/457TWft)[p-l + 0(oc2)] 

(5.19) and 

+ (8iaj7Tw,u){oc222[1 + -}oc2 - 122 + 0(oc3)] 

X [-(1 - p-2)! - ip2(1 - p-2)t + ip2] 

+ 0(OC4).4)}, 1 S p < 00, (5.20) 

T21(ap) = (64ia).5/457T2W,u)[p-a + 0(oc2)], 

1 < p < 00, (S.21) 
T22(bp) = (16ia/37Tw,u) 

X {J.2p2[d21(oc) - d23 (OC) - !d2S (oc)] 

+ tJ.4p4[dn (oc) + 3d13(OC)] 

+ -lr;J.6p6 + 0(oc7)}, 0 < p < 1. (S.22) 

Substituting these values in (4.2S) and (4.64), we 
obtain 
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x [105~ sin-I; _ 8 (1 _ ~)i + 38(1 _ ~)i 
87(1 ~)t 48]} - - p2 (1 _ b2{p2y! 

_ 2oc
2
A[1 + 5oc

2 

_ ~J [3P sin-1Q - (1 - ~)t 
37T 9 3 b p p 

_ 2 ] + 2oc
2
A4ab + 0(OC6»), 

(1- b2{p2)t 457Tp2(1 - b2/p2)t 
(5.25) 

where 
e22 = I + ioc2 + (8ioc3j97T) + 108ioc5{2257T, 

e24 = t(1 + ioc2 + 8ioc3j97T), e26 = ft. (5.26) 

Finally, substituting the value of cPtCp) from (5.23) 
into the system (2.25), we obtain f(p), given by 

8ia ([( p2)!] f(p) = 7TW# 1 - a2 

X [(1 ~ 8ioc
3 + 47oc

4 + 168iO(
5

) 

+ 2 + 97T 360 2257T 

+ !(1 _~) (~+ ~OC4 + 8iO(
5

) 

3 a2 6 180 457T 

+ 1 - - - + O(oc6
) ( 

p2)2 oc4 ] 

a2 600 

_ 8A
5 ~[sin-l f!. _ f!.(1 - t)!] 

457T2 p3 a a a 2 

+ ~ {e ~[3p2 sin-1 Q 
37T 12 2 2b2 P 

_ ~(p2 _ l)t _ sin-1 ~J 
2 b2 p 

+ e A4 [15 p4 sin-1 ~ _ 15(p2 _ l)i 
14 8 4 b4 P 4 b2 

_ 2:(~ -1)~- 2sin-
1 *J} + 0(OC

6»). 
(5.27) 

Thus we have completely determined the values of 
the unknown functions I, rPl' and rP2 which, when 
substituted in the Eqs. (5.3) and (5.4), give rise to the 
values ofjp andj", at the disk, as explained in the next 
section. 

Note that the edge conditions (5.7) and (5.8) do not 
involve the constant C at all. However, to evaluate 
C, we observe from the integral representation formula 
(2.31) for the function M 2(p, z) that [M2(p, z)]z~±o 
are continuous functions of p for all values of p if and 
only if C vanishes. It also follows from the continuity 
consideration of these functions at p = b and the 
relations (2.13) and (2.16) that 

C = O. (5.28) 

6. INDUCED SURFACE CURRENT DENSITY 
AND SCATTERING CROSS SECTION 

The components of the total induced surface 
current density at the annulus are given by the formu
las (5.3) and (5.4). Substituting the values of rPl(P), 
¢>2(P), and f(p) from Eqs. (5.23), (5.25), and (5.27) in 
the formulas (5.3) and (5.4), we readily obtain the 
values of jp and j", at the disk. It follows from these 
values that 

jp(p, rp, 0) = 0«p2 - b2)-t) as p ~ b, 

j",(p, rp, 0) = 0«p2 - b2)-i) as p ~ b. 

We are not giving the values of jp and j", explicitly, 
for the economy of space, and these can be determined 
as explained above. 

Finally, to determine the scattering cross section, 
we first find the far field amplitudes of Ml and M 2 • 

In terms of spherical polar coordinates (r, e, rp), 

p = r sin e, Z = r cos e, 
the far field amplitude for M i , i = 1, 2, is defined as 

Mi(p, z) = AJe)(eikr{r) + 0(r-2), r ~ 00. (6.1) 

Comparing it with the integral representation formu
las for MI and M2 as given by (2.19) and (2.30), we 
obtain, after a slight simplification, 

i cot eIa d . AI(e) = - -- let) - [tJI(kt sm e)] dt 
2 0 dt 

i cot eia d . = -- t - [1(t)]J1(kt sm e) dt 
2 0 dt 

i cot ela 
• = -- trPi(t)JtCkt sm 0) dt 

2 b 

i cot 0 ret) . 
= -2- Jo t[rPll(t) + rPI2(t)]JtCkt sm e)dt, 

(6.2) 

where we have used the relations (2.18), (2.25), (4.3), 
and (5.28). Now via the relations (4.6), (4.7), (4.18), 
and (4.19), there results from (6.2) after some manip
ulations 

A1(O) = ia cos o( oc. )! 
27T sm e 

X (fV!Sl1(aV)Jt(oc sin Ov) dv 

- LX> vtTu(av)J!(tl sin Ov) dv - Ai 

X f v! T12(bv)J!(pv sin e) dv 

+ Ai LX> Vt S I 2(bv)J!(pv sin e) dV). (6.3) 
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Similarly, 

A 2(e) = -ti( Bk2ft 2Jl (kt sin e) dt 

- ftfMt)Jl(kt sin 0) dt) 

= --IGiBarx3),~ sin e[l + 0(rx4)] + ia(rx ~i; e)! 

x (fvtS21(aV)Ji(rt. sin ev) dv 

- fro vtT21(av)Jt(rxv sin e) dv _ ),t 

x fvtT22(aV)Ji«(JV sin 0) dv 

+ ),t fro vt S22(av)Ji«(Jv sin e) dV). (6.4) 

Substituting the values of Sll' S12, Tn, and T12 from 
the Eqs. (5.13)-(5.16) in (6.3), we obtain, after some 
simplification, 

Al(e) = 4a
2

(1. cos 0[1 + 8(1.2 + 8irx
3 

3nwp 15 9n 

+ 16rx
4 

176irx
5 

_ rx
2 

(1 + 11(1.2 + 8irt.
3

) sin2 0 
105 + 225n 10 21 9n 

+ ~ sin4 0 - 16),: + 0«(1.6)J. (6.5) 
280 15n 

Similarly, 

A
2
(O) = _ 4(1.a

2 
sin 0[1 + 11(1.2 + 8irx

3 

3nwp 30 9n 

17rx
4 + 408;rx

5 + cos2 0(rx2 + 17rx
4 + 4i1X

5
) 

+ 280 675n 10 420 45n 

rx4 16).5 ] + - cos4 0 - -2 + 0(rx6) . (6.6) 
280 15n 

Having found Al(O) and A2(O), we use the formula 

w2 

(1 = _(pk)2 
a2 

X r [IA1(OW + cos2 0 IA1(8) + A~(ew] sin 0 dO, 

(6.7) 
where 

for calculating the scattering cross section (1. After 
substituting the values from (6.5) and (6.6) and 

simplifying, we obtain 

(1 = 128(1.4(1 + 22(1.2 + 7312(1.4 _ 32),5 + 0«'1»). 
27n2 25 18375 15n2 

(6.8) 

When). - 0, (6.8) and the values of jp and jep agree 
with the known results for the whole circular disk. l 

APPENDIX 

We give here the proof of result (5.5). 
One readily deduces from the Eqs. (4.3), (4.18), and 

(4.19) that 

2 d ( fro Tu(u) du ) 2 d 
-; dp JP (u 2 

- l)t + np2 dp 

X (_ fb u2T12(1l) du + fP 112S12(U) dU) = 0, 
Jo (l - u2)t Jb (l - u2)t 

a < p < 00. (A1) 

If the function Tu(p) is extended over the range 
b < p ::::;; a, the Eq. (AI) will also hold for the range 
b < p ::::;; a. But then the Eq. (4.25) yields 

rPl(P) = - ~ ~(fa [Sl1(~) + ~l1(u)] dU), 
n dp JP (u - p )t 

b < p::::;; a. (A2) 

This equation gives, after some manipulations, the 
required result 

rPl(P) = ~(Sl1(~; ~ ~i(a) + 0«a2 
_ /)t») 

as p-a. (A3) 

Similarly, the result (5.6) can be established. We have 
verified that the solution rPl (p) satisfies the formulas 
(A2) as well as (A3). 
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Ma has shown that, in the case of an exponential potential, in thes-wave S matrix there exist poles that 
do not contribute to the completeness, even though they appear in the same part of the k plane as the 
bound state poles. These poles were called "redundant" poles. Subsequently, other examples of redun
dant poles have appeared in the literature. Recently their importance with regard to the concept of 
"shadow" states has been stressed by Sudarshan. If we construct the Green's function for the Schrodinger 
equation with the boundary conditions of regularity at the origin and the outgoing spherical waves at 
large distances, the singularities of it in the k plane completely determine the L" class of eigensolutions. 
From this Green's function, the T matrix (and hence the S matrix) is constructed explicitly. This S 
matrix is found to be the same as the one defined through the usual Jost solution, and it is shown that 
the singularities of the S matrix, besides corresponding to those appearing in the Green's function, also 
contain the "redundant" singularities. Thus it is shown that the wavefunctions associated with the 
"redundant" singularities do not belong to the V class. By a careful derivation, we resolve the Ma 
paradox concerning the Heisenberg identity. In the particular cases of the exponential potential and the 
Eckart potential, the redundant solutions correspond to the vanishing of a Wronskian pointing to the 
breakdown of the linear independence of the starting wavefunctions in defining the S matrix through 
the Jost functions. It is stressed that when singularities appear in the S matrix other than those corre
sponding to the bound and scattering states of the given problem, the "redundant" singularities can 
only be understood by a "dynamical" equation such as the Schrodinger equation. 

I. INTRODUCTION the set of solutions does not contain terms corre-
Almost a quarter of a century ago, Mal and, soon sponding to these "redundant" states. We resolve 

after, Jost2 discovered that, for exponential potential this paradox in this paper by showing that HI is, in 
for s waves, the singularities of the S matrix in the actual fact, a tautology when the terms left out in the 
physical plane are of two kinds. One set of poles asymptotic expansions are examined with care. 
corresponds to genuine bound states, and another Subsequently, other examples of redundant poles 
set does not correspond to anything physical, in the appeared in the literature.4.5 Peierls6 later showed 
sense that they do not appear in the completeness that if the potential is a cutoff exponential, these 
statement concerning the entire set of solutions for redundant poles do not appear at all. Moreover, by 
this Hamiltonian. This was exhibited in terms of a arguments of perturbative character, by considering 
"Heisenberg identity, 3 " which is derived from the a superposition of exponential potentials, he associated 
completeness statement concerning the L2 class of the "left-hand cut" for the Yukawa potential with the 
solutions of the problem, when one applied it to "redundant" states, in that this does not appear in 
the asymptotic region of the configuration space where the completeness of solutions for this case. Quite 
the scattering solutions in this region are written in recently, Biswas, Pradhan, and Sudarshan7 have 
terms of the phase shift in the usual way. The Heisen- investigated these poles to elucidate the concept of 
berg identity (HI) thus derived relates the spatial Fourier "shadow" states. 
transform of the S matrix, defined by exp 2i(j(k) In this paper, we wish to put forward an explana
[(j(k) is the phase shift] for real k, to the sum over the tion of these "redundant" singularities of the 
square of the modulus of the asymptotic bound S-matrix in terms of the associated wavefunctions 
state solutions. This integral can also be computed by belonging to a non-L2 class. Moreover, by a careful 
a method of contour integration when S(k) is assumed consideration of the derivation of HI, we explicitly 
to be the suitably analytically continued function in show that, in actuality, a correct derivation yields a 
the upper half k-complex plane which coincides with tautology and not HI. This resolves Ma's paradox. 
exp 2i(j(k) for real k. This evaluation then led to the In nonrelativistic potential theory, a complete identifi
paradox that certain new terms now appear besides cation of the states for given boundary conditions 
the known bound state contributions. Since the can be made by constructing the Green's function for 
complete solutions of this problem can be written the system.s From the Green's function the complete
down, Ma verified explicitly that the completeness of ness of the entire set of solutions is derived; also, 
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following the usual operator relationship between the 
T matrix and the full Green's function, one may 
derive the S matrix for real values of the momenta 
and energy. This is done purely to bring out the 
appearance of an extra term in the S matrix. Also this 
gives us a check on the usual identification of S from 
the Jost solutions. All these are given in the next 
section. In the third section, two examples discussed 
in the literature are re-examined in the light of our 
approach, and it is shown that the "redundant poles" 
correspond to the breakdown of linear independence 
of two basic solutions employed in constructing the 
usual S matrix. Thus the redundant poles correspond 
here to vanishing of the relevant Wronskian. A 
summary of the results is given at the end. 

II. GREEN'S FUNCTION, COMPLETENESS 
RELATION, AND S MATRIX FOR 

SHORT-RANGED POTENTIAL 

The solutions and definitions employed here are 
those of Newton.4 For simplicity, we will throughout 
discuss the s-state Schrodinger equation only, and 
a discussion of the higher angular momentum states 
does not in any way alter the conclusions drawn from 
this simple case. Since most of the details of con
structing the Green's function can be found in either 
Ref. 4 or Ref. 8, we here give only the results. The 
radial SchrOdinger equation to be solved is 

(I) 

where '1J = 2ft V and other symbols have their usual 
significance.9 We will assume that r = 0 is "regular" 
in the sense of the theory of ordinary differential 
equations of second order, so that it will be assumed 
that lim r 2'1J(r) = 0 as r ~ O. Only regular solutions 
are acceptable for the discussion of the physical 
problems. Iff±(k, r) exist such that 

(2) 
r-+ 00 

and are solutions of (I), then, if these two solutions 
are linearly independent, we can construct a general 
regular solution of (1) as 

f(!(k, r) = (2ik)-1[f_(k, O)f+(k, r) 

- f+(k, O)f_(k, r)]. (3) 

f±(k, O) is f±(k, r) evaluated for r = 0 and is called 
the Jost function. Note that cp(k, r) ~ 0 as r ~ O. 
We now construct the Green's function associated 
with (I), and it satisfies the equation 

( - ::2 + '1J(r) - k2)~(+)(k; r r') = -b(r - r'), 

(4) 

with the boundary conditions that it be regular at 
r = 0 and contains only outgoing waves for r ~ 00. 

Then, in terms of (2) and (3), we have4 

~(+)(k; r, r') 

= - [f+(k, 0)]-1 [f+(k, r)cp(k, r')'f}+(r - r') 

+ f+(k, r')cp(k, r)'f}+(r' - r)], (5) 

where 'f}+(r - r') = I for r > r' and is zero otherwise. 
We may also state here that the functions f±(k, r) 

are such that their Wronskian 

W(j+,f-) = -2ik, 

and f±(k, 0) are the Wronskians 

(6) 

W(j±(k, r), cp(k, r» = f±(k, 0), (7) 

W(tpl, tp2) = tpltp~ - tp{tp2' The linear independence 
of the various solutions are implied by nonzero 
values of the corresponding Wronskians. The com
pleteness of the entire set of solutions that obey the re
quirements of regularity at the origin and outgoing 
wave at infinity is at once arrived at from (5) in the 
usual way. Defining the normalized bound state 
solutions and the "outgoing" scattering solutions by 

tp(n)(r) = cp(n)(r)/Nn == cp(iKn, r)/Nn (8a) 
and 

tp(+)(k, r) = kcp(k, r)lf+(k, 0), (8b) 

where N n is the normalization constant, we then find 
that the completeness statement is 

.2 tp(n)(r)tp(n)'(r') + ~ foo dktp(+)(k, r)tp(+)\k, r') 
n 7T .10 

= b(r - r'). (9) 

This also determines the complete set of the U class 
of solutions for this problem.s The iKn here are the 
poles in ~(+)(k, r, r') or the zeros of f+(k, 0) in the 
upper half k-complex plane. It may be noted that, 
for a short-ranged potential,f+(k, r) andf+(k, 0) are 
analytic in the upper half-plane in k but 1>(k, r) is 
analytic in the entire k plane.2 From (5) then, only 
the zeros of f+(k, 0) contribute to the completeness of 
the L2 class of solutions of Eq. (1). It may be remarked 
that, for k = iKn' c/>(k, r) is such that it vanishes for 
r~ 00. 

From (5) we now proceed to construct the T 
matrix by employing the relation 

T = '1J + '1J~(+)CU'. (10) 

We take the diagonal matrix element of (10) corre
sponding to the energy k 2 , so that we directly obtain 
T on the mass shell. Thus, for s waves, we need to 
compute 

(kl Tlk) = Eo + M, 
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where Bo is the term corresponding to 'D, the usual of the Heisenberg identity. Let us write 
Born term, and M stands for the matrix element of 
the second term of (10). Here (r I k) = jo(kr). Thus f±(k, r) = e±ikr + [f±(k, r) - e±ikr] 

Bo = LX'dr r j~(kr)'D(r) 
and 

M = J~<XJ r drLXJ r' dr' 

X jo(krrU(r)r;;J(+)(k; r, rl)'lY(rl)io(kr'). (11) 

We now employ (5) in evaluating M. We use the 
Schrodinger equation obeyed by f+(k, r) in the pres
ence of <U and that obeyed by lo(kr) in the absence of 
<D, to simplify the above expression for M. After 
some algebra, we obtain 

M = - f-Ck, 0) [f (k 0) _ 1]2 - B 
2ikf+(k,0) . + ' 0 

+ f-;~;( 0) [f+(k, 0) - 1] - 2~k [f_(k, 0) - 1]. 

(12) 
Thus we get 

(kl T Ik) = (2ik)-1[1 - f_(k, O)/.f+(k, 0)] (13) 

after clearing the algebraic expression. It is interesting 
to note that the usual Born term is cancelled by a 
corresponding term in M and the remainder adds up 
to (13). Using the relationship 

S(k) = 1 - 2ik (kl T(k) Ik), (14) 

we arrive at the familiar S matrix, which could be 
identified even at the starting point when cf>(k, r) is 
defined by (3). The point of this calculation was to 
show explicitly that the expression (9), which displays 
only the appearance of f+(k, 0) through !:'l(+) , has 
hidden in it the usual S(k). The algebra outlined 
above shows another feature that the Born term in 
(9) does not appear explicitly if T is evaluated by 
making use of !:'l(+). 

This demonstration serves to indicate the appear
ance of the singularities of f_(k, 0) in S(k) but not in 
!:'l(+)(k; rr'). The corresponding eigenfunctions thus 
do not appear in the completeness statement, and 
hence by exclusion they do not belong to the L2 
class of solutions of (\). In the next section we will 
show two examples where the correspondingf_(k, 0) 
have poles, which are then explicitly identified to be 
zeros of the Wronskian of f+(k, r) and f_(k, r) when 
appropriately redefined. 

We will now show that Ma's puzzle is really not a 
puzzle at all by re-examining with care the derivation 

== e±ikr + f",,-±(k, r). (15) 

J±(k, r) is designed to vanish for r ---+ 00. From (3), 
we then have 

rp(k, r) = rpO(k, r) + cpO(k, r), (16) 
where 

and 

cp(k, r) = (2ik)-1[j-Ck, o)J+(k, r) 

- f+(k, O)J_(k, r)]. (16'b) 

Let us substitute (16) in (Sb) and subsequently in the 
completeness relationship (9). Then an exact restate
ment of the completeness relation (9) is 

I 1p(n)(r)1p(n)*(r' ) + ~ (ro dk1p~+)(k, r)1p~+)*(k, r') + A 
n 7T Jo 
where 

and so 

= b(r - r'), (17) 

1p(+)(k, r) = "I)~+)(k, r) + 1jJ(+)(k, r) 

= hp(O)(k, r) + kcp(O)(k, r) 

f+(k, 0) f+(k, 0) 
(lS) 

+ 1jJ(+)(k, r)1p~I-)'(k, r') + 1jJ(+)(k, r)1jJ(+)*(k, r ' )]' 

(19) 

By construction, when (17) is applied to r, r' in the 
asymptotic region, we obtain 

+ 1 Jro dk sin [kr + b(k)] sin [kr ' + b(k)] + A' 
7T ° 

= b(r - r'). (20) 

A' now contains A plus the left-out terms of the second 
term in (17). If it is assumed that if A' ---+ 0, then one 
arrives at the Heisenberg identity upon using the 
definitions S(k) = e2i6

(k) = I/S( -k): 

L: dkS(k)eik(r+r') = ~ Ic
n
l2 e-1Knl(r+r'). (21) 

By a contour integration method, the integral on the 
left side can also be calculated, in which case we 
would obtain an extra term corresponding to the 



                                                                                                                                    

740 NELSON, RAJAGOPAL, AND SHASTRY 

redundant poles. Ma suspected that, even though 
1jJ(+) is zero, in the asymptotic region, an actual 
evaluation of A (or equivalently A') may yield the 
missing contribution due to the redundant poles, thus 
giving the result of the contour integration method. 
This was Ma's puzzle. However, if one explicitly 
calculates A by using only the definitions and proper
ties of f±(k, r), f±(k, 0), and S(k) but not evaluating 
anywhere the Fourier transform of S(k), one merely 
obtains, after straightforward algebra, the result that 

A = -I 1p(n)(r)1p(n)*(r' ) + 1 C'Xl dk S(k)eik(r+r'). 
n TT J-oo 

(22) 

Note that we have not used any asymptotic expansions. 
When (22) is substituted in (17), we merely obtain the 
well-known identity 

~ 100 

dk sin [kr + t5(k)] sin [kr' + t5(k)] 
TT 0 

== b(r - r') _.-L (00 dk S(k)eik(r+r'), (23) 
2TT L"" 

which thus leads us to a tautology! 
To make this a little more explicit, we reconstruct 

the above calculation for the simple case of Eckart 
potential, where all the terms can be explicitly written 
out. The pitfall then is an actual evaluation of certain 
integrals that make up A by contour methods, in 
which case one merely verifies Cauchy's theorem on 
contour integration for S(k). Thus we have resolved 
the original paradox posed by Ma. This tautology 
also reaffirms the fact that, for a given set of param
eters, the non-V solutions are distinct from the V 
set and by such methods as asymptotic expansions of 
the V set one cannot glean at the structure of the 
non-V solutions. 

Here 

III. THE EXPONENTIAL AND THE 
ECKART POTENTIALS 

A. The Exponential PotentiaJ1 

The complete solutions for s waves exist, and 

(24) 

J"'-t(k, r) = eiak In (a"vo)r(1 - 2iak)J _2iak(2av!e-r/2a), 

f_(k, r) = f+( -k, r). (25) 

Then 

S(k) = f-Ck, 0) 
f+(k,O) 

-2iakln(a"vo) r(1 + 2iak)J2iak(2avh (26) 
=e t. 

r(1 - 2iak)J _2iai2avo) 

The zeros off+(k, 0) corresponding to 

J -2ial2avg) = 0 (27) 

define the usual bound states. The poles of f_(k, 0) 
occur when r(l + 2iak) = 00, or when 1 + 2iak = 
zero or negative integer, or, equivalently, 

2iak = -n, n integer (~O). (28) 

The Wronskian of Jv(z) and Lv(z), which are actually 
the two solutionsf±(k, r) without the factors in (25), 
is given by 

W[Jv(Z) , J_v(z)] = -2 sin (VTT)/TTZ. (29) 

This therefore vanishes when v is an integer. Thus, 
the starting solutions (15), where J-2iak and J2iak are 
assumed to be linearly independent, are not so at 
values of k given by (28). In fact, cp(k, r), defined by 
(3) and (25), for such values of k can be computed, 
and, after some algebra, one obtains 

rp(k, r) -----+ -a[JnCx)YnCxe-r/2a) 
2iak=-n 

- J n( xe-r/2a) Yn( x)] (30) 

with x = 2a(vo)t. One thus obtains I n and Yn as the 
two linearly independent solutions.10 cp(k, r) does 
not have the required behavior as r - 00 since it now 
involves Yn(O), not as for bound states. 

B. Eckart Potential 

Here 

VCr) = -2{J).2e-).r/(l + {Je-M )2, 

o < A, -1 < (J < O. (31) 
Then, 

f+(k, r) = eikT{[2k - iAg(r)]/(2k + iA)}, (32) 
with 

g(r) = ({Je-).r - 1)/({Je-M + 1), 

and other quantities follow as before: 

S(k) = (2k + iA)[2k + jAg(0)]/[2k - jAg(0)](2k - jA). 

(33) 

The bound states correspond to zeros of f+(k, 0), 
and we locate them at 

k = itAg(O) (34) 

and the corresponding cp(k, r) - 0 as r - 00. For the 
present choice of (J, this pole does not occur in the 
upper half-plane. A pole off-Ck, 0) is found at 

k = iA/2. (35) 

Defining J+(k, r) = eikT [2k - i2g(r)] to be the solu
tion instead of (32), we find that the Wronskian of the 
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two basic solutions is 

W(/+(k, r),j_(k, r)) = 2ik(4k2 + ).2), (36) 

and this vanishes for k = iA/2. Computing cp(k, r) 
for k = iA/2, we see that 

q{k, r) ~ 1. {Arh(r) + (eAr12 _ e-;·r/2) 
k=,l(2 2). 

x [1 + g(r)g(O)]}, (37) 
where 

her) = 4pe-J.rI2/(P + l)(pe-J.r + 1). 

Again, cp(k, r) diverges as r -- 00. 

It may also be noted that the location of these poles 
are independent of the strength of the potential in 
contrast to the bound state poles. 

We now demonstrate explicitly that the redundant 
poles do not appear in any computation of the sort 
employed by Ma. From (32) we note that we may 
rewrite it in the form 

f+(k, r) = eikr - eikriA[l + gCr)]/(2k + iA) 

;: eikr + J+(k, r), (32') 

and similarly for f-Ck, r). Hence one can explicitly 
compute A, given by (18). All these integrals can be 
done by the methods of contour integration or other
wise, leading in actuality to the statement that 

A = (2/7T) L:dkS(k)eik(Hr'l 

= 27Ti Res [(2j7T)S(k)eik(r+r'l]k=iA/2' 

This is obviously true. If we do not evaluate the 
integrals by any technique, but rewrite it in terms of 
S(k), we merely obtain (23). This then verifies our 
resolution of the Ma paradox for the Eckart potential. 

IV. CONCLUSIONS 

From the analysis presented here, it is now possible 
to make a definite statement in potential theory 
about the nature of the solutions corresponding to 
the singularities that occur in the S matrix, viz., that 
the poles of f_(k, 0) correspond to non-£2 class of 
solutions of the Schrodinger equation and the zeros 
of f+(k, 0) to the £2 class of solutions. This is in 
conformity with one's intuitive feeling that, had there 
been L2 class of functions corresponding to the 
redundant poles, it should have been manifest in the 
completeness relation. From the two examples given 
above, for the exponential type potential, poles appear 

in f_(k, 0) which correspond to vanishing of the 
Wronskian of the solutions, f±(k, r), and hence their 
linear independence required for the definition of 
cp(k, r); hence the definition of S(k) breaks down. 
Sincef±Ck, r) were chosen to obey (2), the new linear 
independent set will necessarily correspond to those 
which do not obey (2), and hence, also, for such a 
case, the non-£2 type of solutions appear. It is known6 

that for any cutoff potential of the exponential type, 
poles do not occur at all for f-Ck, 0), and, in fact, 
f±Ck,O) do not contain any singularities. Following 
the argument of Peieris,6 the cut replaces the re
dundant poles in the case of the Yukawa potential, 
and the corresponding wavefunction seems to diverge 
at infinity, just as for the redundant poles. We have 
thus resolved the original Ma puzzle and given a 
meaning to the redundant poles by characterizing the 
corresponding wavefunction. 

ACKNOWLEDGMENTS 

We wish to thank Professor E. C. G. Sudarshan 
for stressing that a complete resolution of the Ma 
paradox necessitates an understanding of the missing 
terms of the asymptotic expansion. One of us (c. A. N.) 
wishes to thank Professor E. C. G. Sudarshan for 
introducing him to "shadow" states and for the warm 
hospitality at the Center for Particle Theory, the 
University of Texas at Austin, during the summer of 
1970. 

1 s. T. Ma, Phys. Rev. 69, 668 (1946) and 71, 195 (1947). Ma 
employs a different normalization in defining,p(k, r) which makes it 
vanish at the redundant poles. This, therefore, is not useful in 
bringing out the explicit linear dependence of the solutions at such 
poles. See also K. Kodeira, Am. J. Math. 71, 921 (1949); 72, 502 
(1950). 

2 R. Jost, Helv. Phys. Acta 20,256 (1947); see also A. Martin, 
Nuovo Cimento 14, 403 (1959). 

3 W. Heisenberg, Z. Naturforsch. 11/12,607 (1946). 
4 R. G. Newton, Scattering Theory of Waves and Particles 

(McGraw-Hill, New York, 1966). 
a A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, 

Reactions and Decay in Nonrelativistic Quantum Mechanics (Israel 
Program for Scientific Translations, Jerusalem, 1969), p. 63. See also 
A. Bhattacharjee and E. C. G. Sudarshan, Nuovo Cimento 25, 864 
(1962). 

• R. E. Peierls, Proc. Roy. Soc. (London) A253, 16 (1959). 
, S. N. Biswas, T. Pradhan, and E. C. G. Sudarshan, Center for 

Particle Theory, Austin, Texas Preprint CPT-70 AEC-20, 1970. This 
paper inspired the present investigation. 

S B. Friedman, Principles and Techniques of Applied Mathematics 
(Wiley, New York, 1956). 

• A potential is called short range if it decreases exponentially 
at infinity, i.e., if there exists an a> 0 such that 

fo'" r dr ear 1'\)'(r)1 < 00. 

10 This is also noted in Ref. 5. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 4 APRIL 1971 

Erratum: Properties of Overcomplete and Nonorthogonal Basis Vectors 
[J. Math. Phys. 10, 1774 (1969)] 

D. J. ROWE 
Department of Physics, University of Toronto, Ontario, Canada 

(Received 6 October 1970) 

In this paper a simple alternative orthogonalization 
procedure to the well-known Schmidt procedure was 
presented with the principal objective of showing 
how equations-of-motion calculations could be per
formed for excitation operators expanded in a space 
of nonorthogonal, and even over-complete, basis 
operators. It has since come to my attention that this 
orthogonalization procedure is identical to the 

JOURNAL OF MATHEMATICAL PHYSICS 

"Method of Canonical Orthonormalization" pre
sented by Lowdini many years ago and used by him 
in subsequent papers. 2 I wish, therefore, to draw 
the attention of the reader to these papers and to 
apologize to Lowdin for my failure to refer to his 
work. 

1 P.-O. Lowdin, Advan. Phys. 5, 1 (1956). 
2 P.-O. Lowdin, Rev. Mod. Phys. 39, 259 (1967). 
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Erratum: Maxwell's Equations Having a Gradient as Source 
[J. Math. Phys. 11, 2075 (1970)] 

M. MURASKIN 
Department of Physics, University of North Dakota, Grand Forks, North Dakota 58201 

(Received 6 October 1970) 

A gradient source also appears in the work of 
J. S. Dowker and Y. P. Dowker [Proc. Roy. Soc. 
(London) A294, 175 (1966)] and of J. Frenkel [Wave 
Mechanics-Advanced Theory (Oxford u.P., Oxford, 
1934), pp. 266ff]. Other pertinent references are J. M. 
Whittaker, Proc. Cambridge Phil. Soc. 24, 501 (1928), 
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G. Rumer, Z. Physik 65, 244 (1930), and M. Sachs 
and S. Schwebel, J. Math. Phys. 3, 843 (1962). This 
last reference has some expressions similar to ours, 
except that f = 0 is found there. I am grateful to Dr. 
J. S. Dowker for drawing my attention to these 
references. 
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Erratum: Direct Canonical Transformations 
[J. Math. Phys. 11, 2776 (1970)] 

DAVID P. STERN 

Laboratory for Space Physics, Goddard Space Flight Center, Greenbelt, Maryland 20771 

(Received 8 October 1970) 

In this article the claim was made that a perturbation 
method derived by Lacinal was in error by neglecting 
the lower limit of an integral. I am indebted to 
Dr. Lacina for pointing out and proving that the 
contribution of this limit vanishes. The proof is by 
induction, as follows (numbers refer to equations in 
the author's paper). 

To show that one possible solution in Eq. (42) is 
obtained by setting flt) equal to zero, suppose that this 
has already been proved for m :::;;; k - 1; then, for 

those orders, {:m) vanishes at .PI = C. Now f(k) 

depends on these {~m) and on their derivatives, and 
any term in f(k) contains at least one such component 
in undifferentiated form, associated with iJjiJYi' There
fore, with the given choice of fl: m ) of lower orders, 
f(k) 0\ = C) vanishes. Choosing 1p(k) = 0 in (45) then 
shows that fljk) also vanishes. To show this inductive 
process can be started, it is only necessary to observe 
that f(I) = 0, not only for j\ = C but also in general. 

1 J. Lacina, Ann. Phys. (N.Y.) 51, 381 (1969). 
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